TY - JOUR
T1 - Pharmacological modulation of transglutaminase 2 in the unilateral ureteral obstruction mouse model
AU - Prat-Duran, Judit
AU - Binotti Abreu De Araujo, Isabela Bastos
AU - Juste, Nina
AU - Pinilla, Estéfano
AU - Rios, Francisco J.
AU - Montezano, Augusto C.
AU - Touyz, Rhian M.
AU - Simonsen, Ulf
AU - Nørregaard, Rikke
AU - Buus, Niels Henrik
N1 - Publisher Copyright:
© 2024
PY - 2024/12/5
Y1 - 2024/12/5
N2 - Background: Transglutaminase 2 (TG2) is a multifunctional enzyme involved in fibrosis by promoting transforming-growth-factor-β1 and crosslinking of extracellular matrix proteins. These functions are dependent on the open conformation, while the closed state of TG2 can induce vasodilation. We explored the putative protective role of TG2 in its closed state on development of renal fibrosis and blood pressure (BP) regulation. Methods: We studied the unilateral ureteral obstruction (UUO) mouse model treated with LDN27219, which promotes the closed conformation of TG2. Mice were subjected to 7 days UUO or sham operation and treated with vehicle (n = 10), LDN27219 (15 mg/kg/12 h, n = 9) or candesartan (5 mg/kg/day, n = 10) as a clinically comparator. Renal expression of TG2 and pro-fibrotic mediators were evaluated by Western blotting, qPCR and histology, and BP by tail-cuff measurements. Results: Obstructed kidneys showed increased mRNA and protein expression of fibronectin, collagen 3α1 (Col3α1), α-smooth muscle actin and collagen staining. Despite increased renal TG2 mRNA, protein expression was reduced in all UUO groups, but with increased transamidase activity in the vehicle and candesartan groups. LDN27219 reduced mRNA expression of fibronectin and Col3α1, but their protein expression remained unchanged. In contrast to LDN27219, candesartan lowered BP without affecting expression of pro-fibrotic biomarkers. Conclusion: Renal TG2 mRNA and protein expression levels seem dissociated, with transamidase activity being increased. LDN27219 influences kidney pro-fibrotic markers at the mRNA level and attenuates transamidase activity but without affecting collagen content or BP. Our findings suggest that TG2 in its closed conformation has anti-fibrotic effects at the molecular level.
AB - Background: Transglutaminase 2 (TG2) is a multifunctional enzyme involved in fibrosis by promoting transforming-growth-factor-β1 and crosslinking of extracellular matrix proteins. These functions are dependent on the open conformation, while the closed state of TG2 can induce vasodilation. We explored the putative protective role of TG2 in its closed state on development of renal fibrosis and blood pressure (BP) regulation. Methods: We studied the unilateral ureteral obstruction (UUO) mouse model treated with LDN27219, which promotes the closed conformation of TG2. Mice were subjected to 7 days UUO or sham operation and treated with vehicle (n = 10), LDN27219 (15 mg/kg/12 h, n = 9) or candesartan (5 mg/kg/day, n = 10) as a clinically comparator. Renal expression of TG2 and pro-fibrotic mediators were evaluated by Western blotting, qPCR and histology, and BP by tail-cuff measurements. Results: Obstructed kidneys showed increased mRNA and protein expression of fibronectin, collagen 3α1 (Col3α1), α-smooth muscle actin and collagen staining. Despite increased renal TG2 mRNA, protein expression was reduced in all UUO groups, but with increased transamidase activity in the vehicle and candesartan groups. LDN27219 reduced mRNA expression of fibronectin and Col3α1, but their protein expression remained unchanged. In contrast to LDN27219, candesartan lowered BP without affecting expression of pro-fibrotic biomarkers. Conclusion: Renal TG2 mRNA and protein expression levels seem dissociated, with transamidase activity being increased. LDN27219 influences kidney pro-fibrotic markers at the mRNA level and attenuates transamidase activity but without affecting collagen content or BP. Our findings suggest that TG2 in its closed conformation has anti-fibrotic effects at the molecular level.
KW - Fibrosis
KW - Kidney disease
KW - Pharmacology
KW - Transglutaminase 2
KW - Unilateral ureteral obstruction model
UR - http://www.scopus.com/inward/record.url?scp=85205519719&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2024.177037
DO - 10.1016/j.ejphar.2024.177037
M3 - Journal article
C2 - 39369875
AN - SCOPUS:85205519719
SN - 0014-2999
VL - 984
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
M1 - 177037
ER -