Aarhus University Seal / Aarhus Universitets segl

Patterned formation of enolate functional groups on the graphene basal plane

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Documents

DOI

  • Andrew Cassidy
  • Stine Pedersen
  • ,
  • Hendrik Bluhm, Lawrence Berkeley Natl Lab, Lawrence Berkeley National Laboratory, United States Department of Energy (DOE), Div Chem Sci
  • ,
  • Valentin Calisti, Aix Marseille Univ, Aix-Marseille Universite, Centre National de la Recherche Scientifique (CNRS), CNRS, PIIM
  • ,
  • Thierry Angot, Aix Marseille Univ, Aix-Marseille Universite, Centre National de la Recherche Scientifique (CNRS), CNRS, PIIM
  • ,
  • Eric Salomon, Aix Marseille Univ, Aix-Marseille Universite, Centre National de la Recherche Scientifique (CNRS), CNRS, PIIM
  • ,
  • Regis Bisson, Aix Marseille Univ, Aix-Marseille Universite, Centre National de la Recherche Scientifique (CNRS), CNRS, PIIM
  • ,
  • Liv Hornekaer

Chemical functionalization of graphene is one method pursued to engineer new properties into a graphene sheet. Graphene oxide is the most commonly used chemical derivative of graphene. Here we present experimental evidence for the formation of enolate moieties when oxygen atoms are added to the graphene basal plane. The exotic functional groups are stabilized by simultaneous bond formation between the graphene sheet and the underlying Ir(111) substrate. Scanning tunneling microscopy images demonstrate the patterned nature of C-O bond formation and X-ray photoelectron spectroscopy and high-resolution electron energy loss spectroscopy are used to characterize the enolate moiety. The results present a new mechanism for the formation of patterned graphene oxide and provide evidence of a functional group rarely considered for graphene oxide materials.

Original languageEnglish
JournalPhysical Chemistry Chemical Physics
Volume20
Issue45
Pages (from-to)28370-28374
Number of pages5
ISSN1463-9076
DOIs
Publication statusPublished - 7 Dec 2018

    Research areas

  • THERMAL REDUCTION, ATOMIC OXYGEN, OXIDE, IR(111)

See relations at Aarhus University Citationformats

Download statistics

No data available

ID: 138361238