Outsourced Similarity Search on Metric Data Assets

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Man Lung Yiu
  • ,
  • Ira Assent
  • Christian S. Jensen, Denmark
This paper considers a cloud computing setting in which similarity querying of metric data is outsourced to a service provider. The data is to be revealed only to trusted users, not to the service provider or anyone else. Users query the server for the most similar data objects to a query example. Outsourcing offers the data owner scalability and a low initial investment. The need for privacy may be due to the data being sensitive (e.g., in medicine), valuable (e.g., in astronomy), or otherwise confidential. Given this setting, the paper presents techniques that transform the data prior to supplying it to the service provider for similarity queries on the transformed data. Our techniques provide interesting trade-offs between query cost and accuracy. They are then further extended to offer an intuitive privacy guarantee. Empirical studies with real data demonstrate that the techniques are capable of offering privacy while enabling efficient and accurate processing of similarity queries.
Original languageEnglish
JournalI E E E Transactions on Knowledge & Data Engineering
Volume24
Issue2
Pages (from-to)338-352
Number of pages15
ISSN1041-4347
DOIs
Publication statusPublished - 2012

See relations at Aarhus University Citationformats

ID: 34184755