Projects per year
Abstract
This paper is devoted to the semiclassical analysis of the best constants in the magnetic Sobolev embeddings in the case of a bounded domain of the plane carrying Dirichlet conditions. We provide quantitative estimates of these constants (with an explicit dependence on the semiclassical parameter) and analyze the exponential localization in L ∞-norm of the corresponding minimizers near the magnetic wells.
Original language | English |
---|---|
Journal | Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire |
Volume | 33 |
Issue | 5 |
Pages (from-to) | 1199-1222 |
Number of pages | 24 |
ISSN | 0294-1449 |
DOIs | |
Publication status | Published - 2016 |
Keywords
- CALCULUS
- CONCENTRATION-COMPACTNESS PRINCIPLE
- ENERGY
- FIELDS
- Magnetic
- NONLINEAR SCHRODINGER-EQUATIONS
- Nonlinear Schrodinger equation
- OPERATORS
- STATES
- Semiclassical
- WELLS
Fingerprint
Dive into the research topics of 'Optimal magnetic Sobolev constants in the semiclassical limit'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Semiclassical Quantum Mechanics
Fournais, S. (PI), Madsen, P. (Participant), Mikkelsen, S. (Participant), Miqueu, J.-P. C. (Participant) & Bley, G. (Participant)
01/07/2015 → 31/12/2020
Project: Research