Optimal magnetic Sobolev constants in the semiclassical limit

S. Fournais, N.T. Raymond

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

This paper is devoted to the semiclassical analysis of the best constants in the magnetic Sobolev embeddings in the case of a bounded domain of the plane carrying Dirichlet conditions. We provide quantitative estimates of these constants (with an explicit dependence on the semiclassical parameter) and analyze the exponential localization in L -norm of the corresponding minimizers near the magnetic wells.

Original languageEnglish
JournalAnnales de l'Institut Henri Poincaré C, Analyse Non Linéaire
Volume33
Issue5
Pages (from-to)1199-1222
Number of pages24
ISSN0294-1449
DOIs
Publication statusPublished - 2016

Keywords

  • CALCULUS
  • CONCENTRATION-COMPACTNESS PRINCIPLE
  • ENERGY
  • FIELDS
  • Magnetic
  • NONLINEAR SCHRODINGER-EQUATIONS
  • Nonlinear Schrodinger equation
  • OPERATORS
  • STATES
  • Semiclassical
  • WELLS

Fingerprint

Dive into the research topics of 'Optimal magnetic Sobolev constants in the semiclassical limit'. Together they form a unique fingerprint.
  • Semiclassical Quantum Mechanics

    Fournais, S. (PI), Madsen, P. (Participant), Mikkelsen, S. (Participant), Miqueu, J.-P. C. (Participant) & Bley, G. (Participant)

    01/07/201531/12/2020

    Project: Research

Cite this