Abstract
In this paper we give Peter-Weyl-type decomposition theorems for the space of K-finite solutions to intertwining differential operators between parabolically induced representations. Our results generalize a result of Kable for conformally invariant systems. The main idea is based on the duality theorem between intertwining differential operators and homomorphisms between generalized Verma modules. As an application we uniformly realize on the solution spaces of intertwining differential operators all small representations of SL(3,ℝ) attached to the minimal nilpotent orbit.
Original language | English |
---|---|
Journal | Representation Theory |
Volume | 23 |
Issue | 7 |
Pages (from-to) | 213-248 |
Number of pages | 36 |
ISSN | 1088-4165 |
DOIs | |
Publication status | Published - Sept 2019 |
Keywords
- CONFORMALLY INVARIANT-SYSTEMS
- HEISENBERG ULTRAHYPERBOLIC EQUATION
- Intertwining differential operators
- K-finite solutions
- MINIMAL REPRESENTATION
- O(P
- Peter-Weyl-type formulas
- SINGULAR REPRESENTATION
- SL(3
- Torasso's representation
- UNITARY REPRESENTATIONS
- duality theorem
- generalized Verma modules
- hypergeometric polynomials
- small representations