On the Number of π-Electrons Involved in Stepwise Cycloaddition Reactions

Nicolaj Inunnguaq Jessen, Joseph A Izzo, Marek S Modlinski, Giulio Bertuzzi, Karl Anker Jørgensen*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

The development of higher-order cycloadditions has mainly been restricted by the requisite usage of highly conjugated and reactive π-systems. Recent years have witnessed organocatalysis as a potent mediator for several of the challenges associated herein, rendering higher-order cycloadditions a legitimate option for achieving the selective construction of specific molecular scaffolds. These developments reinvigorate the efforts to try to understand the underlying principles for cycloadditions involving a higher number of π-electrons than the "classical" cycloadditions; how do we properly address the impact which the addition of further π-electrons have on the reactivity of a system? Herein, computational investigations of two model higher-order cycloaddition systems have been performed to try to provide insights on changes in energetic barriers induced by the presence of benzofusions in a position which is unobstructive to the reactivity. With experimental substantiation as support, these studies might open up for a discussion on whether the π-electrons of benzofused systems simply act as spectator electrons, or play a tangible role on the observed reactivity to an extent where a distinct nomenclature is meritable.

Original languageEnglish
Article numbere202303299
JournalChemistry - A European Journal
Volume29
Issue72
Number of pages10
ISSN0947-6539
DOIs
Publication statusPublished - 22 Dec 2023

Keywords

  • DFT calculations
  • cycloaddition
  • mechanism
  • reactivity

Fingerprint

Dive into the research topics of 'On the Number of π-Electrons Involved in Stepwise Cycloaddition Reactions'. Together they form a unique fingerprint.

Cite this