Abstract
The development of higher-order cycloadditions has mainly been restricted by the requisite usage of highly conjugated and reactive π-systems. Recent years have witnessed organocatalysis as a potent mediator for several of the challenges associated herein, rendering higher-order cycloadditions a legitimate option for achieving the selective construction of specific molecular scaffolds. These developments reinvigorate the efforts to try to understand the underlying principles for cycloadditions involving a higher number of π-electrons than the "classical" cycloadditions; how do we properly address the impact which the addition of further π-electrons have on the reactivity of a system? Herein, computational investigations of two model higher-order cycloaddition systems have been performed to try to provide insights on changes in energetic barriers induced by the presence of benzofusions in a position which is unobstructive to the reactivity. With experimental substantiation as support, these studies might open up for a discussion on whether the π-electrons of benzofused systems simply act as spectator electrons, or play a tangible role on the observed reactivity to an extent where a distinct nomenclature is meritable.
Original language | English |
---|---|
Article number | e202303299 |
Journal | Chemistry - A European Journal |
Volume | 29 |
Issue | 72 |
Number of pages | 10 |
ISSN | 0947-6539 |
DOIs | |
Publication status | Published - 22 Dec 2023 |
Keywords
- DFT calculations
- cycloaddition
- mechanism
- reactivity