Rolf Fagerberg, University of Southern Denmark, Denmark
Gabriel Moruz, Denmark
Department of Computer Science
Quicksort was first introduced in 1961 by Hoare. Many variants have been developed, the best of which are among the fastest generic sorting algorithms available, as testified by the choice of Quicksort as the default sorting algorithm in most programming libraries. Some sorting algorithms are adaptive, i.e. they have a complexity analysis which is better for inputs which are nearly sorted, according to some specified measure of presortedness. Quicksort is not among these, as it uses Omega(n log n) comparisons even when the input is already sorted. However, in this paper we demonstrate empirically that the actual running time of Quicksort is adaptive with respect to the presortedness measure Inv. Differences close to a factor of two are observed between instances with low and high Inv value. We then show that for the randomized version of Quicksort, the number of element swaps performed is provably adaptive with respect to the measure Inv. More precisely, we prove that randomized Quicksort performs expected O(n(1+log (1+Inv/n))) element swaps, where Inv denotes the number of inversions in the input sequence. This result provides a theoretical explanation for the observed behavior, and gives new insights on the behavior of the Quicksort algorithm. We also give some empirical results on the adaptive behavior of Heapsort and Mergesort.
Original language
English
Title of host publication
ALENEX05
Number of pages
11
Publisher
Society for Industrial and Applied Mathematics
Publication year
2005
Pages
130-140
Publication status
Published - 2005
Event
Workshop on Algorithm Engineering and Experiments - Vancouver, B.C., Canada Duration: 22 Jan 2005 → 22 Jan 2005 Conference number: 7