Aarhus University Seal

On coresets for logistic regression

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperConference articleCommunication

DOI

  • Alexander Munteanu, Dortmund University
  • ,
  • Chris Schwiegelshohn
  • Christian Sohler, Dortmund University
  • ,
  • David P. Woodruff, Carnegie Mellon University

Coresets are one of the central methods to facilitate the analysis of large data.We continue a recent line of research applying the theory of coresets to logistic regression. First, we show the negative result that no strongly sublinear sized coresets exist for logistic regression. To deal with intractable worst-case instances we introduce a complexity measure μ(X), which quantiAes the hardness of compressing a data set for logistic regression. μ(X) has an intuitive statistical interpretation that may be of independent interest. For data sets with bounded μ(X)-complexity, we show that a novel sensitivity sampling scheme produces the Arst provably sublinear (1 ± ϵ)-coreset.

Original languageEnglish
JournalLecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI)
Pages (from-to)267-268
Number of pages2
ISSN1617-5468
DOIs
Publication statusPublished - 2019
Externally publishedYes
Event49. Jahrestagung der Gesellschaft fur Informatik: 50 Jahre Gesellschaft fur Informatik - Informatik fur Gesellschaft, INFORMATIK 2019 - 49th Annual Meeting of the German Informatics Society: 50 years of the German Informatics Society - Computer Science for Society, INFORMATICS 2019 - Kassel, Germany
Duration: 23 Sept 201926 Sept 2019

Conference

Conference49. Jahrestagung der Gesellschaft fur Informatik: 50 Jahre Gesellschaft fur Informatik - Informatik fur Gesellschaft, INFORMATIK 2019 - 49th Annual Meeting of the German Informatics Society: 50 years of the German Informatics Society - Computer Science for Society, INFORMATICS 2019
CountryGermany
CityKassel
Period23/09/201926/09/2019
Sponsoret al, FLAVIA IT Management GmbH, Micromata GmbH Kassel, OctaVIA AG, SMA Solar Technology AG, Yatta Solutions GmbH

Bibliographical note

Publisher Copyright:
© 2019 Gesellschaft fur Informatik (GI). All rights reserved.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

    Research areas

  • Beyond worst-case analysis, Coresets, Logistic regression, Lower bounds

See relations at Aarhus University Citationformats

ID: 207579278