Abstract
As pollinators, insects play a crucial role in ecosystem management and world food production. However, insect populations are declining, necessitating efficient insect monitoring methods. Existing methods analyze video or time-lapse images of insects in nature, but analysis is challenging as insects are small objects in complex and dynamic natural vegetation scenes. In this work, we provide a dataset of primarily honeybees visiting three different plant species during two months of the summer. The dataset consists of 107,387 annotated time-lapse images from multiple cameras, including 9423 annotated insects. We present a method for detecting insects in time-lapse RGB images, which consists of a two-step process. Firstly, the time-lapse RGB images are preprocessed to enhance insects in the images. This motion-informed enhancement technique uses motion and colors to enhance insects in images. Secondly, the enhanced images are subsequently fed into a convolutional neural network (CNN) object detector. The method improves on the deep learning object detectors You Only Look Once (YOLO) and faster region-based CNN (Faster R-CNN). Using motion-informed enhancement, the YOLO detector improves the average micro F1-score from 0.49 to 0.71, and the Faster R-CNN detector improves the average micro F1-score from 0.32 to 0.56. Our dataset and proposed method provide a step forward for automating the time-lapse camera monitoring of flying insects.
| Original language | English |
|---|---|
| Article number | 7242 |
| Journal | Sensors |
| Volume | 23 |
| Issue | 16 |
| Number of pages | 18 |
| ISSN | 1424-8220 |
| DOIs | |
| Publication status | Published - 18 Aug 2023 |
Keywords
- camera recording
- deep learning
- insect dataset
- motion enhancement
- object detection