TY - JOUR
T1 - Nutrient sensing:
T2 - LEAP2 concentration in response to fasting, glucose, lactate, and β-hydroxybutyrate in healthy young males
AU - Pedersen, Mette Glavind Bülow
AU - Lauritzen, Esben Stistrup
AU - Svart, Mads Vandsted
AU - Støy, Julie
AU - Søndergaard, Esben
AU - Thomsen, Henrik Holm
AU - Kampmann, Ulla
AU - Bjerre, Mette
AU - Jessen, Niels
AU - Møller, Niels
AU - Rittig, Nikolaj
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/12
Y1 - 2023/12
N2 - BACKGROUND: The appetite-suppressing potential of liver-expressed antimicrobial peptide 2 (LEAP2), and its antagonistic effects on the hunger-inducing hormone ghrelin have attracted scientific interest. It is unclear how LEAP2 is influenced by fasting and how it responds to specific nutrients.OBJECTIVES: The purpose of this investigation was to assess whether LEAP2 concentration 1) decreases after fasting, 2) increases postprandially, and 3) is regulated by nutrient sensing in the splanchnic bed.METHODS: Plasma LEAP2 concentration was measured in blood samples from 5 clinical cross-over trials, following 1) 36 h of fasting (n = 8), 2) 10 h of fasting (n = 37, baseline data pooled from 4 of the clinical trials), 3) Oral and intravenous glucose administration (n = 11), 4) Oral and intravenous Na-lactate administration (n = 10), and 5) Oral and intravenous Na-β-hydroxybutyrate (BHB) administration (n = 8). All 5 trials included healthy males.RESULTS: Compared with a 10-h fasting period, the median LEAP2 concentration was 38% lower following 36 h of fasting (P < 0.001). Oral administration of glucose elevated, whereas intravenous glucose administration lowered LEAP2 concentration (intervention x time, P = 0.001), resulting in a mean difference of 9 ng/mL (95% confidence interval [CI]: 1, 17) after 120 min. Oral lactate increased, and intravenous lactate decreased LEAP2 (intervention x time, P = 0.007), with a mean difference between interventions of 10 ng/mL (95% CI: 6, 15) after 120 min. In contrast, oral and intravenous administration of BHB reduced the LEAP2 concentration (main effect of time, P < 0.001).CONCLUSIONS: Our investigations show that LEAP2 concentration was lower after a 36-h fast than an overnight fast and that oral delivery of glucose and lactate elevated LEAP2 concentration compared with intravenous administration, whereas LEAP2 concentrations decreased with both oral and intravenous BHB. This indicates that the LEAP2 concentration is sensitive to intestinal exposure to specific substrates, highlighting the need for future studies exploring the relationship between nutrients and LEAP2. This trial was registered at clinicaltrials.gov as NCT01840098, NCT03204877, NCT04299815, NCT03935841, and NCT01705782.
AB - BACKGROUND: The appetite-suppressing potential of liver-expressed antimicrobial peptide 2 (LEAP2), and its antagonistic effects on the hunger-inducing hormone ghrelin have attracted scientific interest. It is unclear how LEAP2 is influenced by fasting and how it responds to specific nutrients.OBJECTIVES: The purpose of this investigation was to assess whether LEAP2 concentration 1) decreases after fasting, 2) increases postprandially, and 3) is regulated by nutrient sensing in the splanchnic bed.METHODS: Plasma LEAP2 concentration was measured in blood samples from 5 clinical cross-over trials, following 1) 36 h of fasting (n = 8), 2) 10 h of fasting (n = 37, baseline data pooled from 4 of the clinical trials), 3) Oral and intravenous glucose administration (n = 11), 4) Oral and intravenous Na-lactate administration (n = 10), and 5) Oral and intravenous Na-β-hydroxybutyrate (BHB) administration (n = 8). All 5 trials included healthy males.RESULTS: Compared with a 10-h fasting period, the median LEAP2 concentration was 38% lower following 36 h of fasting (P < 0.001). Oral administration of glucose elevated, whereas intravenous glucose administration lowered LEAP2 concentration (intervention x time, P = 0.001), resulting in a mean difference of 9 ng/mL (95% confidence interval [CI]: 1, 17) after 120 min. Oral lactate increased, and intravenous lactate decreased LEAP2 (intervention x time, P = 0.007), with a mean difference between interventions of 10 ng/mL (95% CI: 6, 15) after 120 min. In contrast, oral and intravenous administration of BHB reduced the LEAP2 concentration (main effect of time, P < 0.001).CONCLUSIONS: Our investigations show that LEAP2 concentration was lower after a 36-h fast than an overnight fast and that oral delivery of glucose and lactate elevated LEAP2 concentration compared with intravenous administration, whereas LEAP2 concentrations decreased with both oral and intravenous BHB. This indicates that the LEAP2 concentration is sensitive to intestinal exposure to specific substrates, highlighting the need for future studies exploring the relationship between nutrients and LEAP2. This trial was registered at clinicaltrials.gov as NCT01840098, NCT03204877, NCT04299815, NCT03935841, and NCT01705782.
KW - appetite
KW - ghrelin
KW - ketones
KW - lactate
KW - LEAP2
KW - Fasting
KW - Lactic Acid
KW - Humans
KW - Male
KW - Glucose
KW - 3-Hydroxybutyric Acid
KW - Hunger
KW - Ghrelin
UR - http://www.scopus.com/inward/record.url?scp=85175627997&partnerID=8YFLogxK
U2 - 10.1016/j.ajcnut.2023.10.007
DO - 10.1016/j.ajcnut.2023.10.007
M3 - Journal article
C2 - 37844838
AN - SCOPUS:85175627997
SN - 0002-9165
VL - 118
SP - 1091
EP - 1098
JO - American Journal of Clinical Nutrition
JF - American Journal of Clinical Nutrition
IS - 6
ER -