TY - JOUR
T1 - Nitrogen release from differently aged Raphanus sativus L. nitrate catch crops during mineralization at autumn temperatures
AU - Thomsen, Ingrid Kaag
AU - Elsgaard, Lars
AU - Olesen, Jørgen Eivind
AU - Christensen, Bent Tolstrup
PY - 2016/6/1
Y1 - 2016/6/1
N2 - In temperate climates with surplus precipitation and low temperatures during autumn and winter, nitrate catch crops have become crucial in reducing nitrate leaching losses. Preferably, the N retained by the catch crop should remain in the soil and become available to the next main crop. Fodder radish (Raphanus sativus, L.) has emerged as a promising nitrate catch crop in cereal cropping, although the course of remineralization of residue N following termination of this frost-sensitive crucifer remains obscured. We incubated radish residues of different age (different planting and harvest dates) with a loamy sand soil; mineralization of residue N was determined after 1, 2, 4 and 7 months of incubation at 2 °C and 10 °C. Incubations with soil only and with residues of white mustard (Sinapis alba, L) and perennial ryegrass (Lolium perenne, L.) were included as references. Using linear regression, net N release was fitted to plant chemical characteristics (initial concentrations of N, fibre fractions, lignin and C/N ratio). Residue C/N ratio (ranging from 10 to 25) and N concentration (ranging from 17 to 40 mg N/g dry matter) showed superior fits to net N release at both temperatures (r2, 0.64–0.94) while fibre analyses provided inferior fits (r2, 0.12–0.64). This was true across planting date and plant age. Net N release after 7 months of incubation at 2 °C and 10 °C accounted for up to 40% and 50% of residue N, respectively. During most of the incubation period, nitrate dominated the mineral N pool at both temperatures. The N mineralization and nitrification potential at these low soil temperatures suggest that a considerable fraction of the N captured by nitrate catch crops may be remineralized, nitrified and thus available for plant uptake but also for loss by leaching and denitrification.
AB - In temperate climates with surplus precipitation and low temperatures during autumn and winter, nitrate catch crops have become crucial in reducing nitrate leaching losses. Preferably, the N retained by the catch crop should remain in the soil and become available to the next main crop. Fodder radish (Raphanus sativus, L.) has emerged as a promising nitrate catch crop in cereal cropping, although the course of remineralization of residue N following termination of this frost-sensitive crucifer remains obscured. We incubated radish residues of different age (different planting and harvest dates) with a loamy sand soil; mineralization of residue N was determined after 1, 2, 4 and 7 months of incubation at 2 °C and 10 °C. Incubations with soil only and with residues of white mustard (Sinapis alba, L) and perennial ryegrass (Lolium perenne, L.) were included as references. Using linear regression, net N release was fitted to plant chemical characteristics (initial concentrations of N, fibre fractions, lignin and C/N ratio). Residue C/N ratio (ranging from 10 to 25) and N concentration (ranging from 17 to 40 mg N/g dry matter) showed superior fits to net N release at both temperatures (r2, 0.64–0.94) while fibre analyses provided inferior fits (r2, 0.12–0.64). This was true across planting date and plant age. Net N release after 7 months of incubation at 2 °C and 10 °C accounted for up to 40% and 50% of residue N, respectively. During most of the incubation period, nitrate dominated the mineral N pool at both temperatures. The N mineralization and nitrification potential at these low soil temperatures suggest that a considerable fraction of the N captured by nitrate catch crops may be remineralized, nitrified and thus available for plant uptake but also for loss by leaching and denitrification.
KW - fodder radish
KW - incubation
KW - mineralization
KW - nitrate catch crop
KW - ryegrass
KW - white mustard
UR - http://www.scopus.com/inward/record.url?scp=84974663258&partnerID=8YFLogxK
U2 - 10.1111/sum.12264
DO - 10.1111/sum.12264
M3 - Journal article
SN - 0266-0032
VL - 32
SP - 183
EP - 191
JO - Soil Use and Management
JF - Soil Use and Management
IS - 2
ER -