Nitric Acid and Organic Acids Suppress the Role of Methanesulfonic Acid in Atmospheric New Particle Formation

Yosef Knattrup, Jakub Kubečka, Jonas Elm*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

8 Citations (Scopus)

Abstract

Multicomponent atmospheric molecular clusters, typically comprising a combination of acids and bases, play a pivotal role in our climate system and contribute to the perplexing uncertainties embedded in modern climate models. Our understanding of cluster formation is limited by the lack of studies on complex mixed-acid-mixed-base systems. Here, we investigate multicomponent clusters consisting of mixtures of several acid and base molecules: sulfuric acid (SA), methanesulfonic acid (MSA), nitric acid (NA), formic acid (FA), along with methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA). We calculated the binding free energies of a comprehensive set of 252 mixed-acid-mixed-base clusters at the DLPNO-CCSD(T 0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory. Combined with the existing datasets, we simulated the new particle formation (NPF) rates using the Atmospheric Cluster Dynamics Code (ACDC). We find that the presence of NA and FA had a substantial impact, increasing the NPF rate by 60% at realistic conditions. Intriguingly, we find that NA and FA suppress the role of MSA in NPF. These findings suggest that even high concentration of MSA has a limited impact on NPF in polluted regions with high FA and NA. We outline a method for generating a lookup table that could potentially be used in climate models that sufficiently incorporates all the required chemistry. By unraveling the molecular mechanisms of mixed-acid-mixed-base clusters, we get one step closer to comprehending their implications for our global climate system.

Original languageEnglish
JournalThe Journal of Physical Chemistry A
Volume127
Issue36
Pages (from-to)7568-7578
Number of pages11
ISSN1089-5639
DOIs
Publication statusPublished - Sept 2023

Fingerprint

Dive into the research topics of 'Nitric Acid and Organic Acids Suppress the Role of Methanesulfonic Acid in Atmospheric New Particle Formation'. Together they form a unique fingerprint.

Cite this