Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy

Sune Nørhøj Jespersen, Carsten Reidies Bjarkam, Jens Randel Nyengaard, Chakravarty Mallar, Brian Hansen, Thomas Vosegaard, Leif Østergaard, DA Yablonskiy, Niels Christian Nielsen, Peter Vestergaard-Poulsen

    Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

    234 Citations (Scopus)

    Abstract

    Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids.
    Original languageEnglish
    JournalNeuroImage
    Volume49
    Issue1
    Pages (from-to)205-16
    Number of pages12
    ISSN1053-8119
    DOIs
    Publication statusPublished - 2010

    Fingerprint

    Dive into the research topics of 'Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy'. Together they form a unique fingerprint.

    Cite this