Abstract
A continuum thermodynamic constitutive model is developed to predict the large-deformation response of glassy polycarbonate (PC) across a broad range of thermo-mechanical loading conditions. It integrates both slow- and fast-relaxing components, enabling it to capture responses from quasi-static to dynamic loading. The slow-relaxing component features a novel back-stress element that evolves due to network disentanglement. This element is designed to yield under load and soften to reproduce new experimental results showing gradual softening of the kinematic hardening slope during progressively expanding cyclic loading. This thermodynamically consistent model proposes heat dissipation that captures the experimentally estimated adiabatic temperature rise in new cyclic shear tests. The elastic response of the model is engineered to reproduce the observed deformation-induced change in elastic anisotropy, and the flow indicates the emergence of both anisotropic yield and flow. The model reproduces responses observed by others in tension and compression across a wide range of strains, strain rates, and temperatures. It also captures stress relaxation following large deformation, strain recovery after loading and unloading, and ratcheting during cyclic tensile loading.
Original language | English |
---|---|
Article number | 104322 |
Journal | International Journal of Engineering Science |
Volume | 215 |
ISSN | 0020-7225 |
DOIs | |
Publication status | Published - 1 Oct 2025 |
Keywords
- Constitutive model
- Cyclic loading
- Glassy polymers
- Large deformation
- Thermodynamics