Nearly Efficient Likelihood Ratio Tests of a Unit Root in an Autoregressive Model of Arbitrary Order

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

We study large sample properties of likelihood ratio tests of the unit-root hypothesis in an autoregressive model of arbitrary order. Earlier research on this testing problem has developed likelihood ratio tests in the autoregressive model of order 1, but resorted to a plug-in approach when dealing with higher-order models. In contrast, we consider the full model and derive the relevant large sample properties of likelihood ratio tests under a local-to-unity asymptotic framework. As in the simpler model, we show that the full likelihood ratio tests are nearly efficient, in the sense that their asymptotic local power functions are virtually indistinguishable from the Gaussian power envelopes. Extensions to sieve-type approximations and different classes of alternatives are also considered.

Original languageEnglish
JournalEconometric Theory
Volume40
Issue5
ISSN0266-4666
DOIs
Publication statusPublished - Oct 2024

Fingerprint

Dive into the research topics of 'Nearly Efficient Likelihood Ratio Tests of a Unit Root in an Autoregressive Model of Arbitrary Order'. Together they form a unique fingerprint.

Cite this