TY - JOUR
T1 - Mutation-Induced Deamidation of Corneal Dystrophy-Related Transforming Growth Factor β-Induced Protein
AU - Nielsen, Nadia Sukusu
AU - Juhl, Dennis Wilkens
AU - Poulsen, Ebbe Toftgaard
AU - Lukassen, Marie V
AU - Poulsen, Emil Christian
AU - Risør, Michael W
AU - Scavenius, Carsten
AU - Enghild, Jan Johannes
PY - 2017/12/12
Y1 - 2017/12/12
N2 - Mutations in the transforming growth factor β-induced protein (TGFBIp) cause phenotypically diverse corneal dystrophies, where protein aggregation in the cornea leads to severe visual impairment. Previous studies have shown a relationship between mutant-specific corneal dystrophy phenotypes and the thermodynamic stability of TGFBIp. Using liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance (NMR), we investigated correlations between the structural integrity of disease-related mutants of the fourth FAS1 domain (FAS1-4) and deamidation of TGFBIp residue Asn622. We observed a high rate of Asn622 deamidation in the A546D and A546D/P551Q FAS1-4 mutants that were both largely unstructured as determined by NMR. Conversely, the more structurally organized A546T and V624M FAS1-4 mutants had reduced deamidation rates, suggesting that a folded and stable FAS1-4 domain precludes Asn622 deamidation. Wild-type, R555Q, and R555W FAS1-4 mutants displayed very slow deamidation, which agrees with their similar and ordered NMR structures, where Asn622 is in a locked conformation. We confirmed the FAS1-4 mutational effect on deamidation rates in full-length TGFBIp mutants and found a similar ranking compared to that of the FAS1-4 domain alone. Consequently, the deamidation rate of Asn622 can be used to predict the structural effect of the many destabilizing and/or stabilizing mutations reported for TGFBIp. In addition, the deamidation of Asn622 may influence the pathophysiology of TGFBIp-induced corneal dystrophies.
AB - Mutations in the transforming growth factor β-induced protein (TGFBIp) cause phenotypically diverse corneal dystrophies, where protein aggregation in the cornea leads to severe visual impairment. Previous studies have shown a relationship between mutant-specific corneal dystrophy phenotypes and the thermodynamic stability of TGFBIp. Using liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance (NMR), we investigated correlations between the structural integrity of disease-related mutants of the fourth FAS1 domain (FAS1-4) and deamidation of TGFBIp residue Asn622. We observed a high rate of Asn622 deamidation in the A546D and A546D/P551Q FAS1-4 mutants that were both largely unstructured as determined by NMR. Conversely, the more structurally organized A546T and V624M FAS1-4 mutants had reduced deamidation rates, suggesting that a folded and stable FAS1-4 domain precludes Asn622 deamidation. Wild-type, R555Q, and R555W FAS1-4 mutants displayed very slow deamidation, which agrees with their similar and ordered NMR structures, where Asn622 is in a locked conformation. We confirmed the FAS1-4 mutational effect on deamidation rates in full-length TGFBIp mutants and found a similar ranking compared to that of the FAS1-4 domain alone. Consequently, the deamidation rate of Asn622 can be used to predict the structural effect of the many destabilizing and/or stabilizing mutations reported for TGFBIp. In addition, the deamidation of Asn622 may influence the pathophysiology of TGFBIp-induced corneal dystrophies.
KW - Journal Article
UR - http://www.scopus.com/inward/record.url?scp=85038209870&partnerID=8YFLogxK
U2 - 10.1021/acs.biochem.7b00668
DO - 10.1021/acs.biochem.7b00668
M3 - Journal article
C2 - 29140698
SN - 0006-2960
VL - 56
SP - 6470
EP - 6480
JO - Biochemistry
JF - Biochemistry
IS - 49
ER -