TY - JOUR
T1 - Modes of cognition
T2 - Evidence from metastable brain dynamics
AU - Capouskova, Katerina
AU - Kringelbach, Morten L.
AU - Deco, Gustavo
N1 - Publisher Copyright:
© 2022
PY - 2022/10
Y1 - 2022/10
N2 - Managing cognitive load depends on adequate resource allocation by the human brain through the engagement of metastable substates, which are large-scale functional networks that change over time. We employed a novel analysis method, deep autoencoder dynamical analysis (DADA), with 100 healthy adults selected from the Human Connectome Project (HCP) data set in rest and six cognitive tasks. The deep autoencoder of DADA described seven recurrent stochastic metastable substates from the functional connectome of BOLD phase coherence matrices. These substates were significantly differentiated in terms of their probability of appearance, time duration, and spatial attributes. We found that during different cognitive tasks, there was a higher probability of having more connected substates dominated by a high degree of connectivity in the thalamus. In addition, compared with those during tasks, resting brain dynamics have a lower level of predictability, indicating a more uniform distribution of metastability between substates, quantified by higher entropy. These novel findings provide empirical evidence for the philosophically motivated cognitive theory, suggesting on-line and off-line as two fundamentally distinct modes of cognition. On-line cognition refers to task-dependent engagement with the sensory input, while off-line cognition is a slower, environmentally detached mode engaged with decision and planning. Overall, the DADA framework provides a bridge between neuroscience and cognitive theory that can be further explored in the future.
AB - Managing cognitive load depends on adequate resource allocation by the human brain through the engagement of metastable substates, which are large-scale functional networks that change over time. We employed a novel analysis method, deep autoencoder dynamical analysis (DADA), with 100 healthy adults selected from the Human Connectome Project (HCP) data set in rest and six cognitive tasks. The deep autoencoder of DADA described seven recurrent stochastic metastable substates from the functional connectome of BOLD phase coherence matrices. These substates were significantly differentiated in terms of their probability of appearance, time duration, and spatial attributes. We found that during different cognitive tasks, there was a higher probability of having more connected substates dominated by a high degree of connectivity in the thalamus. In addition, compared with those during tasks, resting brain dynamics have a lower level of predictability, indicating a more uniform distribution of metastability between substates, quantified by higher entropy. These novel findings provide empirical evidence for the philosophically motivated cognitive theory, suggesting on-line and off-line as two fundamentally distinct modes of cognition. On-line cognition refers to task-dependent engagement with the sensory input, while off-line cognition is a slower, environmentally detached mode engaged with decision and planning. Overall, the DADA framework provides a bridge between neuroscience and cognitive theory that can be further explored in the future.
KW - Brain states
KW - Classification
KW - DADA
KW - Entropy
KW - fMRI
KW - Functional connectivity
KW - HCP data set
U2 - 10.1016/j.neuroimage.2022.119489
DO - 10.1016/j.neuroimage.2022.119489
M3 - Journal article
C2 - 35882268
AN - SCOPUS:85134888240
SN - 1053-8119
VL - 260
JO - NeuroImage
JF - NeuroImage
M1 - 119489
ER -