Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
Final published version
Mass transport across cell membranes is a primary process for cellular metabolism. For this purpose, electrostatically mediated membrane fusion is exploited to transport various small molecules including glucose-6-phosphate, isopropyl β-D-thiogalactoside, and macromolecules such as DNA plasmids from negatively charged large unilamellar vesicles (LUVs) to positively charged giant unilamellar vesicles (GUVs). After membrane fusion between these oppositely charged vesicles, molecules are transported into GUVs to trigger the NAD+ involved enzyme reaction, bacterial gene expression, and in vitro gene expression of green fluorescent protein from a DNA plasmid. The optimized charged lipid percentages are 10% for both positively charged GUVs and negatively charged LUVs to ensure the fusion process. The experimental results demonstrate a universal way for mass transport into the artificial cells through vesicle fusions, which paves a crucial step for the investigation of complicated cellular metabolism.
Original language | English |
---|---|
Journal | Analytical Chemistry |
Volume | 94 |
Issue | 9 |
Pages (from-to) | 3811-3818 |
Number of pages | 8 |
ISSN | 0003-2700 |
DOIs | |
Publication status | Published - Feb 2022 |
See relations at Aarhus University Citationformats
ID: 260868052