Aarhus University Seal

Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Beatriz Ferreira Araujo, Universite de Toulouse
  • ,
  • Stefan Osterwalder, Swiss Federal Institute of Technology Zurich, Universite Grenoble Alpes
  • ,
  • Natalie Szponar, University of Toronto
  • ,
  • Domenica Lee, University of Toronto
  • ,
  • Mariia V. Petrova, Aix-Marseille Université
  • ,
  • Jakob Boyd Pernov
  • Shaddy Ahmed, Universite Grenoble Alpes
  • ,
  • Lars Eric Heimbürger-Boavida, Aix-Marseille Université
  • ,
  • Laure Laffont, Universite de Toulouse
  • ,
  • Roman Teisserenc, Universite Toulouse III - Paul Sabatier
  • ,
  • Nikita Tananaev, RAS - Melnikov Permafrost Institute, Siberian Branch, North-Eastern Federal University
  • ,
  • Claus Nordstrom
  • Olivier Magand, Universite Grenoble Alpes
  • ,
  • Geoff Stupple, Environment Canada
  • ,
  • Henrik Skov
  • Alexandra Steffen, Environment Canada
  • ,
  • Bridget Bergquist, University of Toronto
  • ,
  • Katrine Aspmo Pfaffhuber, Norwegian Institute for Air Research
  • ,
  • Jennie L. Thomas, Universite Grenoble Alpes
  • ,
  • Simon Scheper, Dr. Simon Scheper—Research, University of Basel
  • ,
  • Tuukka Petäjä, University of Helsinki
  • ,
  • Aurélien Dommergue, Universite Grenoble Alpes
  • ,
  • Jeroen E. Sonke, Universite de Toulouse

During Arctic springtime, halogen radicals oxidize atmospheric elemental mercury (Hg0), which deposits to the cryosphere. This is followed by a summertime atmospheric Hg0 peak that is thought to result mostly from terrestrial Hg inputs to the Arctic Ocean, followed by photoreduction and emission to air. The large terrestrial Hg contribution to the Arctic Ocean and global atmosphere has raised concern over the potential release of permafrost Hg, via rivers and coastal erosion, with Arctic warming. Here we investigate Hg isotope variability of Arctic atmospheric, marine, and terrestrial Hg. We observe highly characteristic Hg isotope signatures during the summertime peak that reflect re-emission of Hg deposited to the cryosphere during spring. Air mass back trajectories support a cryospheric Hg emission source but no major terrestrial source. This implies that terrestrial Hg inputs to the Arctic Ocean remain in the marine ecosystem, without substantial loss to the global atmosphere, but with possible effects on food webs.

Original languageEnglish
Article number4956
JournalNature Communications
Volume13
Issue1
ISSN2041-1723
DOIs
Publication statusPublished - Dec 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

See relations at Aarhus University Citationformats

ID: 281548568