Mammary metabolism and colostrogenesis in sows during late gestation and the colostral period

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Standard

Mammary metabolism and colostrogenesis in sows during late gestation and the colostral period. / Feyera, Takele; Zhou, Pan; Nuntapaitoon, Morakot; Sørensen, Kristina Ulrich; Krogh, Uffe; Bruun, Thomas Sønderby; Purup, Stig; Jørgensen, Henry; Poulsen, Hanne Damgaard; Theil, Peter Kappel.

In: Journal of Animal Science, Vol. 97, No. 1, 01.01.2019, p. 231-245.

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Harvard

APA

CBE

MLA

Vancouver

Feyera T, Zhou P, Nuntapaitoon M, Sørensen KU, Krogh U, Bruun TS et al. Mammary metabolism and colostrogenesis in sows during late gestation and the colostral period. Journal of Animal Science. 2019 Jan 1;97(1):231-245. https://doi.org/10.1093/jas/sky395

Author

Feyera, Takele ; Zhou, Pan ; Nuntapaitoon, Morakot ; Sørensen, Kristina Ulrich ; Krogh, Uffe ; Bruun, Thomas Sønderby ; Purup, Stig ; Jørgensen, Henry ; Poulsen, Hanne Damgaard ; Theil, Peter Kappel. / Mammary metabolism and colostrogenesis in sows during late gestation and the colostral period. In: Journal of Animal Science. 2019 ; Vol. 97, No. 1. pp. 231-245.

Bibtex

@article{b27d957515ca4b1195f321048970e119,
title = "Mammary metabolism and colostrogenesis in sows during late gestation and the colostral period",
abstract = "The aims of this study were to investigate 1) the effect of high dietary fiber (DF; 19.3{\%} to 21.7{\%}) supplemented to late gestating sows on mammary uptake and metabolism of energy substrates as well as colostrum production and 2) the ontogeny of colostral fat and lactose synthesis using mammary carbon balance, and colostral protein using IgG as a biomarker. Sows were fed either a control diet (CON) consisting of a standard gestation diet (14.6{\%} DF) until day 108 of gestation and a transition diet (16.8{\%} DF) from day 109 of gestation until farrowing or a high DF treatment where part of the daily ration was replaced with a high DF supplement (FIB). The FIB sows received 19.3{\%} and 21.7{\%} DF in the last 2 wk prior to farrowing. Sows were surgically implanted with permanent indwelling catheters at day 75 ± 2 of gestation and blood samples were collected at 6 different time points in late gestation and at 11 different time points within 24 h after the onset of farrowing. Colostrum samples were collected at 0, 12, and 24 h after the onset of farrowing. Arterial concentration of acetate (P = 0.05) and colostral fat content (P = 0.009) were greater in FIB sows compared with CON sows. Plasma IgG dropped from day -10 relative to farrowing (P < 0.001), suggesting an uptake by the mammary glands. Mammary plasma flow (P = 0.007) and net mammary uptake of glucose (P = 0.04) increased during farrowing while dietary treatment had no effect on net mammary uptake of other energy substrates during late gestation and farrowing. The net mammary uptake of carbon from glucogenic precursors did not equate to the sum of carbons secreted in colostral lactose and released as CO2, indicating that carbons from ketogenic precursors were likely used for colostral fat and for oxidation. Mammary nonprotein carbon uptake matched the mammary output, indicating that the majority of colostral fat and lactose were produced after the onset of farrowing. In conclusion, high DF included in the diet for late gestating sows increased colostral fat content by 49{\%} but this substantial dietary response could not be explained by the increased carbon uptake from short chain fatty acids during the colostral period. The nonprotein carbon balance of mammary glands during farrowing suggests that the majority of colostral fat and lactose were produced after the onset of farrowing, whereas the drop in plasma IgG in late gestation suggests that the mammary glands take up this colostral component prior to farrowing.",
author = "Takele Feyera and Pan Zhou and Morakot Nuntapaitoon and S{\o}rensen, {Kristina Ulrich} and Uffe Krogh and Bruun, {Thomas S{\o}nderby} and Stig Purup and Henry J{\o}rgensen and Poulsen, {Hanne Damgaard} and Theil, {Peter Kappel}",
year = "2019",
month = "1",
day = "1",
doi = "10.1093/jas/sky395",
language = "English",
volume = "97",
pages = "231--245",
journal = "Journal of Animal Science",
issn = "0021-8812",
publisher = "AMER SOC ANIMAL SCIENCE",
number = "1",

}

RIS

TY - JOUR

T1 - Mammary metabolism and colostrogenesis in sows during late gestation and the colostral period

AU - Feyera, Takele

AU - Zhou, Pan

AU - Nuntapaitoon, Morakot

AU - Sørensen, Kristina Ulrich

AU - Krogh, Uffe

AU - Bruun, Thomas Sønderby

AU - Purup, Stig

AU - Jørgensen, Henry

AU - Poulsen, Hanne Damgaard

AU - Theil, Peter Kappel

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The aims of this study were to investigate 1) the effect of high dietary fiber (DF; 19.3% to 21.7%) supplemented to late gestating sows on mammary uptake and metabolism of energy substrates as well as colostrum production and 2) the ontogeny of colostral fat and lactose synthesis using mammary carbon balance, and colostral protein using IgG as a biomarker. Sows were fed either a control diet (CON) consisting of a standard gestation diet (14.6% DF) until day 108 of gestation and a transition diet (16.8% DF) from day 109 of gestation until farrowing or a high DF treatment where part of the daily ration was replaced with a high DF supplement (FIB). The FIB sows received 19.3% and 21.7% DF in the last 2 wk prior to farrowing. Sows were surgically implanted with permanent indwelling catheters at day 75 ± 2 of gestation and blood samples were collected at 6 different time points in late gestation and at 11 different time points within 24 h after the onset of farrowing. Colostrum samples were collected at 0, 12, and 24 h after the onset of farrowing. Arterial concentration of acetate (P = 0.05) and colostral fat content (P = 0.009) were greater in FIB sows compared with CON sows. Plasma IgG dropped from day -10 relative to farrowing (P < 0.001), suggesting an uptake by the mammary glands. Mammary plasma flow (P = 0.007) and net mammary uptake of glucose (P = 0.04) increased during farrowing while dietary treatment had no effect on net mammary uptake of other energy substrates during late gestation and farrowing. The net mammary uptake of carbon from glucogenic precursors did not equate to the sum of carbons secreted in colostral lactose and released as CO2, indicating that carbons from ketogenic precursors were likely used for colostral fat and for oxidation. Mammary nonprotein carbon uptake matched the mammary output, indicating that the majority of colostral fat and lactose were produced after the onset of farrowing. In conclusion, high DF included in the diet for late gestating sows increased colostral fat content by 49% but this substantial dietary response could not be explained by the increased carbon uptake from short chain fatty acids during the colostral period. The nonprotein carbon balance of mammary glands during farrowing suggests that the majority of colostral fat and lactose were produced after the onset of farrowing, whereas the drop in plasma IgG in late gestation suggests that the mammary glands take up this colostral component prior to farrowing.

AB - The aims of this study were to investigate 1) the effect of high dietary fiber (DF; 19.3% to 21.7%) supplemented to late gestating sows on mammary uptake and metabolism of energy substrates as well as colostrum production and 2) the ontogeny of colostral fat and lactose synthesis using mammary carbon balance, and colostral protein using IgG as a biomarker. Sows were fed either a control diet (CON) consisting of a standard gestation diet (14.6% DF) until day 108 of gestation and a transition diet (16.8% DF) from day 109 of gestation until farrowing or a high DF treatment where part of the daily ration was replaced with a high DF supplement (FIB). The FIB sows received 19.3% and 21.7% DF in the last 2 wk prior to farrowing. Sows were surgically implanted with permanent indwelling catheters at day 75 ± 2 of gestation and blood samples were collected at 6 different time points in late gestation and at 11 different time points within 24 h after the onset of farrowing. Colostrum samples were collected at 0, 12, and 24 h after the onset of farrowing. Arterial concentration of acetate (P = 0.05) and colostral fat content (P = 0.009) were greater in FIB sows compared with CON sows. Plasma IgG dropped from day -10 relative to farrowing (P < 0.001), suggesting an uptake by the mammary glands. Mammary plasma flow (P = 0.007) and net mammary uptake of glucose (P = 0.04) increased during farrowing while dietary treatment had no effect on net mammary uptake of other energy substrates during late gestation and farrowing. The net mammary uptake of carbon from glucogenic precursors did not equate to the sum of carbons secreted in colostral lactose and released as CO2, indicating that carbons from ketogenic precursors were likely used for colostral fat and for oxidation. Mammary nonprotein carbon uptake matched the mammary output, indicating that the majority of colostral fat and lactose were produced after the onset of farrowing. In conclusion, high DF included in the diet for late gestating sows increased colostral fat content by 49% but this substantial dietary response could not be explained by the increased carbon uptake from short chain fatty acids during the colostral period. The nonprotein carbon balance of mammary glands during farrowing suggests that the majority of colostral fat and lactose were produced after the onset of farrowing, whereas the drop in plasma IgG in late gestation suggests that the mammary glands take up this colostral component prior to farrowing.

UR - http://www.scopus.com/inward/record.url?scp=85059503581&partnerID=8YFLogxK

U2 - 10.1093/jas/sky395

DO - 10.1093/jas/sky395

M3 - Journal article

VL - 97

SP - 231

EP - 245

JO - Journal of Animal Science

JF - Journal of Animal Science

SN - 0021-8812

IS - 1

ER -