Machine learning approach to integrated endometrial transcriptomic datasets reveals biomarkers predicting uterine receptivity in cattle at seven days after estrous

Maria Belen Rabaglino, Haja N. Kadarmideen

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

9 Citations (Scopus)
109 Downloads (Pure)

Abstract

The main goal was to apply machine learning (ML) methods on integrated multi-transcriptomic data, to identify endometrial genes capable of predicting uterine receptivity according to their expression patterns in the cow. Public data from five studies were re-analyzed. In all of them, endometrial samples were obtained at day 6–7 of the estrous cycle, from cows or heifers of four different European breeds, classified as pregnant (n = 26) or not (n = 26). First, gene selection was performed through supervised and unsupervised ML algorithms. Then, the predictive ability of potential key genes was evaluated through support vector machine as classifier, using the expression levels of the samples from all the breeds but one, to train the model, and the samples from that one breed, to test it. Finally, the biological meaning of the key genes was explored. Fifty genes were identified, and they could predict uterine receptivity with an overall 96.1% accuracy, despite the animal’s breed and category. Genes with higher expression in the pregnant cows were related to circadian rhythm, Wnt receptor signaling pathway, and embryonic development. This novel and robust combination of computational tools allowed the identification of a group of biologically relevant endometrial genes that could support pregnancy in the cattle.
Original languageEnglish
Article number16981
JournalScientific Reports
Volume10
Issue1
Number of pages10
ISSN2045-2322
DOIs
Publication statusPublished - 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Machine learning approach to integrated endometrial transcriptomic datasets reveals biomarkers predicting uterine receptivity in cattle at seven days after estrous'. Together they form a unique fingerprint.

Cite this