Research output: Contribution to conference › Poster › Research
Research output: Contribution to conference › Poster › Research
}
TY - CONF
T1 - Low-loss all-optical ns-switching for scalable quantum photonic links
AU - Balauroiu, Mircea
AU - Ruf, Fabian
AU - Volet, Nicolas
AU - Heck, Martijn
PY - 2021/6/2
Y1 - 2021/6/2
N2 - Quantum information processing is set to play a large role in future communication technology. Promising realizations for long-distance quantum communication are based on photons. Due to the prospect of moving them out of the lab and toward scalable real-world applications, photonic integrated circuits (PICs) have attracted significant attention. Mature foundry-based PIC platforms based on silicon and silicon nitride have the potential to be a stepping-stone in this development. Especially for necessary switching and routing of single photons including nanosecond delay lines, achieving ultralow losses is key and switching bandwidths should match the single-photon generation rate, which is typically in the MHz to GHz regime for quantum-dot based sources.All-optical switches based on silicon nitride microring resonators are evaluated for their integration with gigahertz single-photon sources. Requirements for the resonator characteristics and control signal waveform are obtained from the Kerr nonlinear dynamics and travelling-wave simulations, and demonstrate the feasibility for single-photon switching in a mature foundry-based PIC platform.
AB - Quantum information processing is set to play a large role in future communication technology. Promising realizations for long-distance quantum communication are based on photons. Due to the prospect of moving them out of the lab and toward scalable real-world applications, photonic integrated circuits (PICs) have attracted significant attention. Mature foundry-based PIC platforms based on silicon and silicon nitride have the potential to be a stepping-stone in this development. Especially for necessary switching and routing of single photons including nanosecond delay lines, achieving ultralow losses is key and switching bandwidths should match the single-photon generation rate, which is typically in the MHz to GHz regime for quantum-dot based sources.All-optical switches based on silicon nitride microring resonators are evaluated for their integration with gigahertz single-photon sources. Requirements for the resonator characteristics and control signal waveform are obtained from the Kerr nonlinear dynamics and travelling-wave simulations, and demonstrate the feasibility for single-photon switching in a mature foundry-based PIC platform.
M3 - Poster
T2 - Photonic Links for Quantum Technology Platforms
Y2 - 31 May 2021 through 3 June 2021
ER -