Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
Final published version
We study topological and geometric functionals of l∞-random geometric graphs on the high-dimensional torus in a sparse regime, where the expected number of neighbors decays exponentially in the dimension. More precisely, we establish moment asymptotics, functional central limit theorems and Poisson approximation theorems for certain functionals that are additive under disjoint unions of graphs. For instance, this includes simplex counts and Betti numbers of the Rips complex, as well as general subgraph counts of the random geometric graph. We also present multi-additive extensions that cover the case of persistent Betti numbers of the Rips complex.
Original language | English |
---|---|
Journal | Stochastic Processes and Their Applications |
Volume | 163 |
Pages (from-to) | 203-236 |
Number of pages | 34 |
ISSN | 0304-4149 |
DOIs | |
Publication status | Published - Sept 2023 |
Publisher Copyright:
© 2023 The Author(s)
See relations at Aarhus University Citationformats
ID: 331301354