Aarhus University Seal / Aarhus Universitets segl

Lectins interact differentially with purified human eosinophils, cultured cord blood-derived mast cells and the myeloid leukaemic cell line AML14.3D10: induction of interleukin-4 secretion is conserved among granulocytes, but is not proportional to agglutination or lectin-glycoprotein interaction

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • The Department of Paediatrics
  • Laboratorium for Proteinkemi
  • The Department og Pulmunary Medicine
BACKGROUND: Atopy is closely associated with the cellular T helper type-2 (Th2) phenotype, that is dominated by the pleiotrophic cytokine IL-4. The cellular source of IL-4 has yet to be determined, although basophils have been proposed. Eosinophils and mast cells are likely contenders investigated here, and the eosinophil-like leukaemia line AML14.3D10 is compared to eosinophils as an in vitro culturable model for eosinophils. Lectins can cross-link-specific surface glycoproteins and are found in the ingested (processed foods) and inhaled (airborne pollen grains) human environment. Therefore it is of interest to determine whether lectins can elicit the release of IL-4 from Th2-associated granulocytes other than basophils. METHOD: This study investigated the ability of eosinophils, AML14.3D10 and mast cells to secrete preformed IL-4 in response to stimulation with lectins, and explored molecular mechanisms underlying the interaction. RESULTS: Purified eosinophils and basophils, and cultured mast cells and AML14.3D10 cells were incubated with 1 micro m lectin. Agglutination was scored by microscopy. IL-4 secretion was measured by enzyme-linked immunosorbent assay. Biotinylated lectins were used to determine binding to cells by flow cytometry and in lectin blots of sodium dodecyl sulphate (SDS) gels. DISCUSSION: Purified human eosinophils, AML14.3D10 cells and cultured mast cells secrete IL-4 with a pattern similar to that found in basophils when stimulated with a panel of reactive and unreactive lectins. The lectin SNA induces IL-4 secretion from mast cells and basophils, but not from eosinophils or AML14.3D10. Eosinophils appear to secrete only pre-formed IL-4, whereas mast cells may synthesize IL-4 on ligation with the lectin LCA. Lectins that agglutinate the granulocytes investigated do not necessarily induce secretion of IL-4. Lectins that elicit secretion of IL-4 bind more to eosinophils than unreactive lectins as determined by flow cytometry and lectin blotting of SDS gels. CONCLUSION: As granulocytes with functions related to that of basophils, eosinophils, AML14.3D10 and cultured mast cells respond to stimulation with lectins similarly to basophils. This emphasizes the possibility that eosinophils and mast cells may be linked in their cellular heritage as the cellular partners, and lectins as ligands, may contribute to the maintenance of a Th2-favoured microenvironment that is thought to underlie the allergic march.
Original languageEnglish
JournalClinical and Experimental Allergy
Volume33
Issue7
Pages (from-to)930-5
Number of pages5
ISSN0954-7894
Publication statusPublished - 2003

    Research areas

  • Agglutination, Antigens, CD34, Dose-Response Relationship, Drug, Drug Interactions, Enzyme-Linked Immunosorbent Assay, Eosinophils, Fetal Blood, Granulocytes, Humans, Interleukin-4, Lectins, Leukemia, Myeloid, Mast Cells, Tumor Cells, Cultured

See relations at Aarhus University Citationformats

ID: 21668917