Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
Laserfarm – A high-throughput workflow for generating geospatial data products of ecosystem structure from airborne laser scanning point clouds. / Kissling, W. Daniel; Shi, Yifang; Koma, Zsófia et al.
In: Ecological Informatics, Vol. 72, 101836, 12.2022.Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
}
TY - JOUR
T1 - Laserfarm – A high-throughput workflow for generating geospatial data products of ecosystem structure from airborne laser scanning point clouds
AU - Kissling, W. Daniel
AU - Shi, Yifang
AU - Koma, Zsófia
AU - Meijer, Christiaan
AU - Ku, Ou
AU - Nattino, Francesco
AU - Seijmonsbergen, Arie C.
AU - Grootes, Meiert W.
N1 - Publisher Copyright: © 2022
PY - 2022/12
Y1 - 2022/12
N2 - Quantifying ecosystem structure is of key importance for ecology, conservation, restoration, and biodiversity monitoring because the diversity, geographic distribution and abundance of animals, plants and other organisms is tightly linked to the physical structure of vegetation and associated microclimates. Light Detection And Ranging (LiDAR) — an active remote sensing technique — can provide detailed and high resolution information on ecosystem structure because the laser pulse emitted from the sensor and its subsequent return signal from the vegetation (leaves, branches, stems) delivers three-dimensional point clouds from which metrics of vegetation structure (e.g. ecosystem height, cover, and structural complexity) can be derived. However, processing 3D LiDAR point clouds into geospatial data products of ecosystem structure remains challenging across broad spatial extents due to the large volume of national or regional point cloud datasets (typically multiple terabytes consisting of hundreds of billions of points). Here, we present a high-throughput workflow called ‘Laserfarm’ enabling the efficient, scalable and distributed processing of multi-terabyte LiDAR point clouds from national and regional airborne laser scanning (ALS) surveys into geospatial data products of ecosystem structure. Laserfarm is a free and open-source, end-to-end workflow which contains modular pipelines for the re-tiling, normalization, feature extraction and rasterization of point cloud information from ALS and other LiDAR surveys. The workflow is designed with horizontal scalability and can be deployed with distributed computing on different infrastructures, e.g. a cluster of virtual machines. We demonstrate the Laserfarm workflow by processing a country-wide multi-terabyte ALS dataset of the Netherlands (covering ∼34,000 km2 with ∼700 billion points and ∼ 16 TB uncompressed LiDAR point clouds) into 25 raster layers at 10 m resolution capturing ecosystem height, cover and structural complexity at a national extent. The Laserfarm workflow, implemented in Python and available as Jupyter Notebooks, is applicable to other LiDAR datasets and enables users to execute automated pipelines for generating consistent and reproducible geospatial data products of ecosystems structure from massive amounts of LiDAR point clouds on distributed computing infrastructures, including cloud computing environments. We provide information on workflow performance (including total CPU times, total wall-time estimates and average CPU times for single files and LiDAR metrics) and discuss how the Laserfarm workflow can be scaled to other LiDAR datasets and computing environments, including remote cloud infrastructures. The Laserfarm workflow allows a broad user community to process massive amounts of LiDAR point clouds for mapping vegetation structure, e.g. for applications in ecology, biodiversity monitoring and ecosystem restoration.
AB - Quantifying ecosystem structure is of key importance for ecology, conservation, restoration, and biodiversity monitoring because the diversity, geographic distribution and abundance of animals, plants and other organisms is tightly linked to the physical structure of vegetation and associated microclimates. Light Detection And Ranging (LiDAR) — an active remote sensing technique — can provide detailed and high resolution information on ecosystem structure because the laser pulse emitted from the sensor and its subsequent return signal from the vegetation (leaves, branches, stems) delivers three-dimensional point clouds from which metrics of vegetation structure (e.g. ecosystem height, cover, and structural complexity) can be derived. However, processing 3D LiDAR point clouds into geospatial data products of ecosystem structure remains challenging across broad spatial extents due to the large volume of national or regional point cloud datasets (typically multiple terabytes consisting of hundreds of billions of points). Here, we present a high-throughput workflow called ‘Laserfarm’ enabling the efficient, scalable and distributed processing of multi-terabyte LiDAR point clouds from national and regional airborne laser scanning (ALS) surveys into geospatial data products of ecosystem structure. Laserfarm is a free and open-source, end-to-end workflow which contains modular pipelines for the re-tiling, normalization, feature extraction and rasterization of point cloud information from ALS and other LiDAR surveys. The workflow is designed with horizontal scalability and can be deployed with distributed computing on different infrastructures, e.g. a cluster of virtual machines. We demonstrate the Laserfarm workflow by processing a country-wide multi-terabyte ALS dataset of the Netherlands (covering ∼34,000 km2 with ∼700 billion points and ∼ 16 TB uncompressed LiDAR point clouds) into 25 raster layers at 10 m resolution capturing ecosystem height, cover and structural complexity at a national extent. The Laserfarm workflow, implemented in Python and available as Jupyter Notebooks, is applicable to other LiDAR datasets and enables users to execute automated pipelines for generating consistent and reproducible geospatial data products of ecosystems structure from massive amounts of LiDAR point clouds on distributed computing infrastructures, including cloud computing environments. We provide information on workflow performance (including total CPU times, total wall-time estimates and average CPU times for single files and LiDAR metrics) and discuss how the Laserfarm workflow can be scaled to other LiDAR datasets and computing environments, including remote cloud infrastructures. The Laserfarm workflow allows a broad user community to process massive amounts of LiDAR point clouds for mapping vegetation structure, e.g. for applications in ecology, biodiversity monitoring and ecosystem restoration.
KW - Big data
KW - Computing architectures
KW - Ecosystem morphological traits
KW - Essential biodiversity variable
KW - Macroecology
KW - Python
UR - http://www.scopus.com/inward/record.url?scp=85139008029&partnerID=8YFLogxK
U2 - 10.1016/j.ecoinf.2022.101836
DO - 10.1016/j.ecoinf.2022.101836
M3 - Journal article
AN - SCOPUS:85139008029
VL - 72
JO - Ecological Informatics
JF - Ecological Informatics
SN - 1574-9541
M1 - 101836
ER -