We extend a result of Hančl, Kolouch and Nair on the irrationality and transcendence of continued fractions. We show that for a sequence {αn} of algebraic integers of degree bounded by d, each attaining the maximum absolute value among their conjugates and satisfying certain growth conditions, the condition (formula presented) implies that the continued fraction α = [0; α1, α2, . . . ] is not an algebraic number of degree less than or equal to D.