Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review


  • intermitten

    Final published version, 11 MB, PDF document


  • Nanna Dreyer-Andersen, Syddansk universitet
  • ,
  • Ana Sofia Almeida, Instituto de Biologia Experimental e Tecnológica (IBET), Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa
  • ,
  • Pia Jensen, Department of Neurobiology Research, Syddansk universitet
  • ,
  • Morad Kamand, Syddansk universitet
  • ,
  • Justyna Okarmus, Syddansk universitet
  • ,
  • Tine Rosenberg, Odense Universitetshospital
  • ,
  • Stig Düring Friis
  • ,
  • Alberto Martínez Serrano, University Autonoma Madrid-C.S.I.C Campus Cantoblanco
  • ,
  • Morten Blaabjerg, Zealand University Hospital
  • ,
  • Bjarne Winther Kristensen, Odense Universitetshospital
  • ,
  • Troels Skrydstrup
  • Jan Bert Gramsbergen, Syddansk universitet
  • ,
  • Helena L.A. Vieira, Instituto de Biologia Experimental e Tecnológica (IBET), Universidade Nova de Lisboa
  • ,
  • Morten Meyer, Syddansk universitet, Zealand University Hospital

Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson’s disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem cells constitute an alternative source of cells for transplantation in Parkinson’s disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content of β-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells (Caspase3) was reduced, whereas the expression of a cell proliferation marker (Ki67) was left unchanged. Increased expression of hypoxia inducible factor-1α and production of reactive oxygen species (ROS) in cultures exposed to CO may suggest a mechanism involving mitochondrial alterations and generation of ROS. In conclusion, the present procedure using controlled, short-term CO exposure allows efficient dopaminergic differentiation of human neural stem cells at low cost and may as such be

Original languageEnglish
Article numbere0191207
JournalP L o S One
Number of pages24
Publication statusPublished - 16 Jan 2018

See relations at Aarhus University Citationformats

Download statistics

No data available

ID: 120993032