Abstract
An unusual diastereodivergent stereoselective allylation reaction is presented. It consists of a palladium-catalyzed allylation reaction of an organocatalytically generated amino isobenzofulvene, where the diastereoselectivity is controlled by the electronic properties of a monodentate, achiral ligand on palladium. One major diastereoisomer is formed using triarylphosphines substituted with neutral or electron-donating substituents of the aryl group, while those with electron-withdrawing substituents favor the other diastereoisomer. The diastereoselectivity correlates with the Taft inductive parameter of substituents on the triarylphosphine ligand on palladium. The synergistic reaction involves both a catalytic secondary amine catalyst for the indene-aldehyde activation and the monodentate phosphine ligands on palladium, affording a highly enantioselective reaction with up to 98 % enantiomeric excess. Based on computational investigations, the role of the monodentate phosphine ligand on the diastereoselectivity is discussed.
Original language | English |
---|---|
Article number | e202202951 |
Journal | Chemistry - A European Journal |
Volume | 28 |
Issue | 71 |
ISSN | 0947-6539 |
DOIs | |
Publication status | Published - Dec 2022 |
Keywords
- allylic alkylation
- asymmetric synthesis
- DFT calculations
- mechanism
- synergistic catalysis