Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
}
TY - JOUR
T1 - Inference for the jump part of quadratic variation of Itô semimartingales
AU - Veraart, Almut
PY - 2010
Y1 - 2010
N2 - Recent research has focused on modeling asset prices by Itô semimartingales. In such a modeling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference of realized variance and realized multipower variation. The main contribution of this paper is twofold. First, it provides a bivariate asymptotic limit theory for realized variance and realized multipower variation in the presence of jumps. Second, this paper presents new, consistent estimators for the jump part of the asymptotic variance of the estimation bias. Eventually, this leads to a feasible asymptotic theory that is applicable in practice. Finally, Monte Carlo studies reveal a good finite sample performance of the proposed feasible limit theory.
AB - Recent research has focused on modeling asset prices by Itô semimartingales. In such a modeling framework, the quadratic variation consists of a continuous and a jump component. This paper is about inference on the jump part of the quadratic variation, which can be estimated by the difference of realized variance and realized multipower variation. The main contribution of this paper is twofold. First, it provides a bivariate asymptotic limit theory for realized variance and realized multipower variation in the presence of jumps. Second, this paper presents new, consistent estimators for the jump part of the asymptotic variance of the estimation bias. Eventually, this leads to a feasible asymptotic theory that is applicable in practice. Finally, Monte Carlo studies reveal a good finite sample performance of the proposed feasible limit theory.
U2 - 10.1017/S0266466609100014
DO - 10.1017/S0266466609100014
M3 - Journal article
VL - 26
SP - 331
EP - 368
JO - Econometric Theory
JF - Econometric Theory
SN - 0266-4666
IS - 2
ER -