Inequalities for the lowest magnetic Neumann eigenvalue

S. Fournais*, B. Helffer

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

We study the ground-state energy of the Neumann magnetic Laplacian on planar domains. For a constant magnetic field, we consider the question whether the disc maximizes this eigenvalue for fixed area. More generally, we discuss old and new bounds obtained on this problem.

Original languageEnglish
JournalLetters in Mathematical Physics
Volume109
Issue7
Pages (from-to)1683-1700
Number of pages18
ISSN0377-9017
DOIs
Publication statusPublished - Jul 2019

Keywords

  • Isoperimetric inequalities
  • Magnetic Faber-Krahn inequality
  • Spectral theory

Fingerprint

Dive into the research topics of 'Inequalities for the lowest magnetic Neumann eigenvalue'. Together they form a unique fingerprint.
  • Semiclassical Quantum Mechanics

    Fournais, S. (PI), Madsen, P. (Participant), Mikkelsen, S. (Participant), Miqueu, J.-P. C. (Participant) & Bley, G. (Participant)

    01/07/201531/12/2020

    Project: Research

Cite this