Projects per year
Abstract
We study the ground-state energy of the Neumann magnetic Laplacian on planar domains. For a constant magnetic field, we consider the question whether the disc maximizes this eigenvalue for fixed area. More generally, we discuss old and new bounds obtained on this problem.
Original language | English |
---|---|
Journal | Letters in Mathematical Physics |
Volume | 109 |
Issue | 7 |
Pages (from-to) | 1683-1700 |
Number of pages | 18 |
ISSN | 0377-9017 |
DOIs | |
Publication status | Published - Jul 2019 |
Keywords
- Isoperimetric inequalities
- Magnetic Faber-Krahn inequality
- Spectral theory
Fingerprint
Dive into the research topics of 'Inequalities for the lowest magnetic Neumann eigenvalue'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Semiclassical Quantum Mechanics
Fournais, S. (PI), Madsen, P. (Participant), Mikkelsen, S. (Participant), Miqueu, J.-P. C. (Participant) & Bley, G. (Participant)
01/07/2015 → 31/12/2020
Project: Research