Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
Final published version, 5.04 MB, PDF document
Final published version
BACKGROUND: Diabetic nephropathy (DN) is a serious complication of diabetes and a common cause of end stage renal failure. Insulin-like growth factor (IGF)-signaling has been implicated in DN, but is mechanistically poorly understood. Here, we assessed the activity of the metalloproteinase PAPP-A, an activator of IGF activity, and its possible interaction with the endogenous PAPP-A inhibitors stanniocalcin (STC)-1 and -2 in the mammalian kidney under normal and hyperglycemic conditions.
METHODS AND RESULTS: Immunohistochemistry demonstrated that PAPP-A, its proteolytic substrate IGF binding protein-4, STC1 and STC2 are present in the human kidney. Endogenous inhibited complexes of PAPP-A (PAPP-A:STC1 and PAPP-A:STC2) were demonstrated in media conditioned by human mesangial cells (HMCs), suggesting that PAPP-A activity is regulated by the STCs in kidney tissue. A method for the selective detection of active PAPP-A in tissue was developed and a significant increase in glomerular active PAPP-A in human diabetic kidney relative to normal was observed. In DN patients, the estimated glomerular filtration rate correlated with PAPP-A activity. In diabetic mice, glomerular growth was reduced when PAPP-A activity was antagonized by adeno-associated virus-mediated overexpression of STC2.
CONCLUSION: We propose that PAPP-A activity in renal tissue is precisely balanced by STC1 and STC2. An imbalance in this equilibrium causing increased PAPP-A enzymatic activity potentially contributes to the development of DN, and thus, therapeutic targeting of PAPP-A activity may represent a novel strategy for its treatment.
Original language | English |
---|---|
Article number | 155218 |
Journal | Metabolism: Clinical and Experimental |
Volume | 132 |
Number of pages | 10 |
ISSN | 0026-0495 |
DOIs | |
Publication status | Published - Jul 2022 |
See relations at Aarhus University Citationformats
ID: 272522344