Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaper › Journal article › Research › peer-review
Final published version
BACKGROUND: Impaired mineral ion metabolism is a hallmark of CKD-metabolic bone disorder. It can lead to pathologic vascular calcification and is associated with an increased risk of cardiovascular mortality. Loss of calcium-sensing receptor (CaSR) expression in vascular smooth muscle cells exacerbates vascular calcification in vitro. Conversely, vascular calcification can be reduced by calcimimetics, which function as allosteric activators of CaSR.
METHODS: To determine the role of the CaSR in vascular calcification, we characterized mice with targeted Casr gene knockout in vascular smooth muscle cells ( SM22α CaSR Δflox/Δflox ).
RESULTS: Vascular smooth muscle cells cultured from the knockout (KO) mice calcified more readily than those from control (wild-type) mice in vitro. However, mice did not show ectopic calcifications in vivo but they did display a profound mineral ion imbalance. Specifically, KO mice exhibited hypercalcemia, hypercalciuria, hyperphosphaturia, and osteopenia, with elevated circulating fibroblast growth factor 23 (FGF23), calcitriol (1,25-D 3), and parathyroid hormone levels. Renal tubular α-Klotho protein expression was increased in KO mice but vascular α-Klotho protein expression was not. Altered CaSR expression in the kidney or the parathyroid glands could not account for the observed phenotype of the KO mice.
CONCLUSIONS: These results suggest that, in addition to CaSR's established role in the parathyroid-kidney-bone axis, expression of CaSR in vascular smooth muscle cells directly contributes to total body mineral ion homeostasis.
Original language | English |
---|---|
Journal | Journal of the American Society of Nephrology : JASN |
Volume | 33 |
Issue | 7 |
Pages (from-to) | 1323-1340 |
Number of pages | 18 |
ISSN | 1046-6673 |
DOIs | |
Publication status | Published - Jul 2022 |
See relations at Aarhus University Citationformats
ID: 272523026