Aarhus University Seal

Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

DOI

  • Judit Tomsen-Melero, Institut the Ciencia de Materials de Barcelona, Nanomol Technologies SL, 08193 Bellaterra, Spain, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Solène Passemard, Institut the Ciencia de Materials de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Natalia García-Aranda, Autonomous University of Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Zamira Vanessa Días-Riascos, Autonomous University of Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Ramon González-Rioja, Institut the Ciencia de Materials de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Jannik Nedergaard Pedersen
  • ,
  • Jeppe Lyngsø
  • ,
  • Josep Merlo-Mas, Nanomol Technologies SL, 08193 Bellaterra, Spain, Spain
  • Edgar Cristóbal-Lecina, Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona,Spain, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • José Luis Corchero, Autonomous University of Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Daniel Pulido, Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona,Spain, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Patricia Cámara-Sánchez, Autonomous University of Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Irina Portnaya, Technion-Israel Institute of Technology, Israel
  • Inbal Ionita, Technion-Israel Institute of Technology, Israel
  • Simó Schwarz, Jr., Autonomous University of Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Jaume Veciana, Institut the Ciencia de Materials de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Santi Sala, Nanomol Technologies SL, 08193 Bellaterra, Spain, Spain
  • Miriam Royo, Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona,Spain, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Alba Córdoba, Nanomol Technologies SL, 08193 Bellaterra, Spain, Spain
  • Dganit Danino, Guangdong Technion Israel Institute of Technology, Technion-Israel Institute of Technology, China
  • Jan Skov Pedersen
  • Elisabet González-Mira, Institut the Ciencia de Materials de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Ibane Abasolo, Autonomous University of Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
  • Nora Ventosa, Institut the Ciencia de Materials de Barcelona, Biomaterials and Nanomedicine (CIBER-BBN), Spain
Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients. An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells. However, low colloidal stability and limited enzyme entrapment efficiency could hinder the further pharmaceutical development and the clinical translation of these nanoformulations. Herein, the incorporation of the cationic miristalkonium chloride (MKC) surfactant to RGD nanovesicles is explored, comparing two different nanosystems—quatsomes and hybrid liposomes. In both systems, the positive surface charge introduced by MKC promotes electrostatic interactions between the enzyme and the nanovesicles, improving the loading capacity and colloidal stability. The presence of high MKC content in quatsomes practically abolishes GLA enzymatic activity, while low concentrations of the surfactant in hybrid liposomes stabilize the enzyme without compromising its activity. Moreover, hybrid liposomes show improved efficacy in cell cultures and a good in vitro/in vivo safety profile, ensuring their future preclinical and clinical development.
Original languageEnglish
JournalACS applied materials & interfaces
Volume13
Issue7
Pages (from-to)7825-7838
Number of pages14
ISSN1944-8244
DOIs
Publication statusPublished - Feb 2021

    Research areas

  • Fabry disease, Miristalkonium chloride (MKC), Nanovesicles, RGD targeting, α-galactosidase A (GLA)

See relations at Aarhus University Citationformats

ID: 212259638