IFT proteins spatially control the geometry of cleavage furrow ingression and lumen positioning

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Documents

DOI

  • Nicolas Taulet, CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France.
  • ,
  • Benjamin Vitre, CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France.
  • ,
  • Christelle Anguille, CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France.
  • ,
  • Audrey Douanier, CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France.
  • ,
  • Murielle Rocancourt, Institut PASTEUR, CNRS UMR 3691 Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, 25-28 rue du Dr Roux, 75015, Paris, France.
  • ,
  • Michael Taschner
  • ,
  • Esben Lorentzen
  • Arnaud Echard, Institut PASTEUR, CNRS UMR 3691 Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, 25-28 rue du Dr Roux, 75015, Paris, France.
  • ,
  • Benedicte Delaval, CRBM, CNRS, Univ. Montpellier, Centrosome, Cilia and Pathology Lab, 1919 Route de Mende, 34293, Montpellier, France. benedicte.delaval@crbm.cnrs.fr.

Cytokinesis mediates the physical separation of dividing cells and, in 3D epithelia, provides a spatial landmark for lumen formation. Here, we unravel an unexpected role in cytokinesis for proteins of the intraflagellar transport (IFT) machinery, initially characterized for their ciliary role and their link to polycystic kidney disease. Using 2D and 3D cultures of renal cells, we show that IFT proteins are required to correctly shape the central spindle, to control symmetric cleavage furrow ingression and to ensure central lumen positioning. Mechanistically, IFT88 directly interacts with the kinesin MKLP2 and is essential for the correct relocalization of the Aurora B/MKLP2 complex to the central spindle. IFT88 is thus required for proper centralspindlin distribution and central spindle microtubule organization. Overall, this work unravels a novel non-ciliary mechanism for IFT proteins at the central spindle, which could contribute to kidney cyst formation by affecting lumen positioning.

Original languageEnglish
Article number1928
JournalNature Communications
Volume8
Number of pages12
ISSN2041-1723
DOIs
Publication statusPublished - 4 Dec 2017

    Research areas

  • Journal Article

See relations at Aarhus University Citationformats

Download statistics

No data available

ID: 119298652