TY - JOUR
T1 - Hydrothermal Co-Liquefaction of Synthetic Polymers and Miscanthus giganteus
T2 - Synergistic and Antagonistic Effects
AU - Souza dos Passos, Juliano
AU - Glasius, Marianne
AU - Biller, Patrick
PY - 2020/12/28
Y1 - 2020/12/28
N2 - Synthetic polymers constitute one of the main carbon-containing wastes generated nowadays. In this study, combined hydrothermal liquefaction (co-HTL) is evaluated for 1:1 mixtures of Miscanthus giganteus and different synthetic polymers—including poly-acrylonitrile-butadiene-styrene (ABS), bisphenol-A-based epoxy resin, high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyamide 6 (PA6), polyamide 6/6 (PA66), poly(ethylene terephthalate) (PET), polycarbonate (PC), polypropylene (PP), polystyrene (PS), and polyurethane foam (PUR)—using batch HTL at 350 °C. Based on oil yields and composition, a comprehensive discussion of observed interactions is presented. The results show that even though polyolefins do not depolymerize under these conditions, the oil products depict that these materials interact with miscanthus biocrude changing its composition. Bisphenol-A-based polymers as PC and epoxy resins both contribute to the formation of monomer-like structures in the biocrude. PET increases the presence of carboxyl groups, while polyamides and PUR increase significantly the oil yield, modifying the biocrude composition toward nitrogen-containing molecules. PUR co-HTL was found to increase oil, carbon, and energy yields, leading to process improvement when compared to pure miscanthus processing.
AB - Synthetic polymers constitute one of the main carbon-containing wastes generated nowadays. In this study, combined hydrothermal liquefaction (co-HTL) is evaluated for 1:1 mixtures of Miscanthus giganteus and different synthetic polymers—including poly-acrylonitrile-butadiene-styrene (ABS), bisphenol-A-based epoxy resin, high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyamide 6 (PA6), polyamide 6/6 (PA66), poly(ethylene terephthalate) (PET), polycarbonate (PC), polypropylene (PP), polystyrene (PS), and polyurethane foam (PUR)—using batch HTL at 350 °C. Based on oil yields and composition, a comprehensive discussion of observed interactions is presented. The results show that even though polyolefins do not depolymerize under these conditions, the oil products depict that these materials interact with miscanthus biocrude changing its composition. Bisphenol-A-based polymers as PC and epoxy resins both contribute to the formation of monomer-like structures in the biocrude. PET increases the presence of carboxyl groups, while polyamides and PUR increase significantly the oil yield, modifying the biocrude composition toward nitrogen-containing molecules. PUR co-HTL was found to increase oil, carbon, and energy yields, leading to process improvement when compared to pure miscanthus processing.
KW - hydrothermal liquefaction
KW - chemical recycling
KW - depolymerization
KW - circular economy
KW - polymers
UR - http://www.scopus.com/inward/record.url?scp=85099066379&partnerID=8YFLogxK
U2 - 10.1021/acssuschemeng.0c07317
DO - 10.1021/acssuschemeng.0c07317
M3 - Journal article
SN - 2168-0485
VL - 8
SP - 19051
EP - 19061
JO - ACS Sustainable Chemistry & Engineering
JF - ACS Sustainable Chemistry & Engineering
IS - 51
ER -