Aarhus University Seal / Aarhus Universitets segl

Helix unwinding in the effector region of elongation factor EF-Tu-GDP

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Bioinformatics Research Centre (BiRC)
  • Interdisciplinary Nanoscience Center
  • Department of Molecular Biology
  • Department of Molecular Biology
BACKGROUND: Elongation factor Tu (EF-Tu) in its GTP conformation is a carrier of aminoacylated tRNAs (aa-tRNAs) to the ribosomal A site during protein biosynthesis. The ribosome triggers GTP hydrolysis, resulting in the dissociation of EF-Tu-GDP from the ribosome. The affinity of EF-Tu for other molecules involved in this process, some of which are unknown, is regulated by two regions (Switch I and Switch II) that have different conformations in the GTP and GDP forms. The structure of the GDP form of EF-Tu is known only as a trypsin-modified fragment, which lacks the Switch I, or effector, domain. The aim of this work was to establish the overall structure of intact EF-Tu-GDP, in particular the structure of the effector domain. RESULTS: The crystal structures of intact EF-Tu-GDP from Thermus aquaticus and Escherichia coli have been determined at resolutions of 2.7 A and 3.8 A, respectively. The structures confirm the domain orientation previously found in the structure of partially trypsin-digested EF-Tu-GDP. The structures of the effector region in T. aquaticus and E. coli EF-Tu-GDP are very similar. The C-terminal part of the effector region of EF-Tu-GDP is a beta hairpin; in EF-Tu-GTP, this region forms an alpha helix. This conformational change is not a consequence of crystal packing. CONCLUSIONS: EF-Tu undergoes major conformational changes upon GTP hydrolysis. Unlike other GTP-binding proteins, EF-Tu exhibits a dramatic conformational change in the effector region, involving an unwinding of a small helix and the formation of a beta hairpin structure. This change is presumably involved in triggering the release of tRNA, and EF-Tu, from the ribosome.
Original languageEnglish
JournalStructure
Volume4
Issue10
Pages (from-to)1141-51
Number of pages10
ISSN0969-2126
Publication statusPublished - 1996

    Research areas

  • Bacterial Proteins, Binding Sites, Computer Simulation, Crystallography, Escherichia coli, Guanosine Diphosphate, Models, Molecular, Molecular Sequence Data, Peptide Elongation Factor Tu, Protein Structure, Secondary, Species Specificity, Thermus

See relations at Aarhus University Citationformats

ID: 15166680