title = "Graph cohomologies and rational homotopy type of configuration spaces",

abstract = "We compare the cohomology complex defined by Baranovsky and Sazdanovi{\'c}, that is the E1 page of a spectral sequence converging to the homology of the configuration space depending on a graph, with the rational model for the configuration space given by Kriz and Totaro. In particular we generalize the rational model to any graph and to an algebra over any field. We show that the dual of the Baranovsky and Sazdanovi{\'c}'s complex is quasi equivalent to this generalized version of the Kriz's model. ",

author = "Erica Minuz and Marcel B{\"o}kstedt",

year = "2019",

month = apr,

language = "English",

publisher = "ArXiv",

type = "WorkingPaper",

institution = "ArXiv",

}

RIS

TY - UNPB

T1 - Graph cohomologies and rational homotopy type of configuration spaces

AU - Minuz, Erica

AU - Bökstedt, Marcel

PY - 2019/4

Y1 - 2019/4

N2 - We compare the cohomology complex defined by Baranovsky and Sazdanović, that is the E1 page of a spectral sequence converging to the homology of the configuration space depending on a graph, with the rational model for the configuration space given by Kriz and Totaro. In particular we generalize the rational model to any graph and to an algebra over any field. We show that the dual of the Baranovsky and Sazdanović's complex is quasi equivalent to this generalized version of the Kriz's model.

AB - We compare the cohomology complex defined by Baranovsky and Sazdanović, that is the E1 page of a spectral sequence converging to the homology of the configuration space depending on a graph, with the rational model for the configuration space given by Kriz and Totaro. In particular we generalize the rational model to any graph and to an algebra over any field. We show that the dual of the Baranovsky and Sazdanović's complex is quasi equivalent to this generalized version of the Kriz's model.

M3 - Working paper

BT - Graph cohomologies and rational homotopy type of configuration spaces