Glutamate transporter activity promotes enhanced Na+/K+-ATPase -mediated extracellular K+ management during neuronal activity.

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

DOI

  • Brian R Larsen, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
  • Rikke Holm
  • Bente Vilsen
  • Nanna Macaulay, Denmark
Neuronal activity is associated with transient [K+ ]o increases. The excess K+ is cleared by surrounding astrocytes, partly by the Na+ /K+ -ATPase of which several subunit isoform combinations exist. The astrocytic Na+ /K+ -ATPase α2β2 isoform constellation responds directly to increased [K+ ]o but, in addition, Na+ /K+ -ATPase-mediated K+ clearance could be governed by astrocytic [Na+ ]i . During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+ -coupled glutamate transporters, thereby elevating [Na+ ]i . It thus remains unresolved whether the different Na+ /K+ -ATPase isoforms are controlled by [K+ ]o or [Na+ ]i during neuronal activity. Hippocampal slice recordings of stimulus-induced [K+ ]o transients with ion-sensitive microelectrodes revealed reduced Na+ /K+ -ATPase-mediated K+ management upon parallel inhibition of the glutamate transporter. The apparent intracellular Na+ affinity of isoform constellations involving the astrocytic β2 has remained elusive as a result of inherent expression of β1 in most cell systems, as well as technical challenges involved in measuring intracellular affinity in intact cells. We therefore expressed the different astrocytic isoform constellations in Xenopus oocytes and determined their apparent Na+ affinity in intact oocytes and isolated membranes. The Na+ /K+ -ATPase was not fully saturated at basal astrocytic [Na+ ]i , irrespective of isoform constellation, although the β1 subunit conferred lower apparent Na+ affinity to the α1 and α2 isoforms than the β2 isoform. In summary, enhanced astrocytic Na+ /K+ -ATPase-dependent K+ clearance was obtained with parallel glutamate transport activity. The astrocytic Na+ /K+ -ATPase isoform constellation α2β1 appeared to be specifically geared to respond to the [Na+ ]i transients associated with activity-induced glutamate transporter activity.
Original languageEnglish
JournalThe Journal of Physiology
Volume594
Issue22
Pages (from-to)6627-6641
ISSN0022-3751
DOIs
Publication statusPublished - 15 Nov 2016

See relations at Aarhus University Citationformats

ID: 107741005