TY - JOUR
T1 - Geobatteries in environmental biogeochemistry
T2 - Electron transfer and utilization
AU - Cui, Shihao
AU - Wang, Rui
AU - Chen, Qing
AU - Pugliese, Lorenzo
AU - Wu, Shubiao
PY - 2024/11
Y1 - 2024/11
N2 - The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil–water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil–water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.
AB - The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil–water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil–water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.
KW - Electron transfer
KW - Geobattery
KW - Redox reactions
UR - http://www.scopus.com/inward/record.url?scp=85198133224&partnerID=8YFLogxK
U2 - 10.1016/j.ese.2024.100446
DO - 10.1016/j.ese.2024.100446
M3 - Review
AN - SCOPUS:85198133224
SN - 2666-4984
VL - 22
JO - Environmental Science and Ecotechnology
JF - Environmental Science and Ecotechnology
M1 - 100446
ER -