Abstract

Glyphosate possesses antimicrobial properties, and the present study investigated potential effects of feed glyphosate on piglet gastrointestinal microbial ecology. Weaned piglets were allocated to four diets (glyphosate contents [mg/kg feed]: 0 mg/kg control [CON; i.e., basal diet with no glyphosate added], 20 mg/kg as Glyphomax commercial herbicide [GM20], and 20 mg/kg [IPA20] and 200 mg/kg [IPA200] as glyphosate isopropylamine [IPA] salt). Piglets were sacrificed after 9 and 35 days of treatment, and stomach, small intestine, cecum, and colon digesta were analyzed for glyphosate, aminomethylphosphonic acid (AMPA), organic acids, pH, dry matter content, and microbiota composition. Digesta glyphosate contents reflected dietary levels (on day 35, 0.17, 16.2, 20.5, and 207.5 mg/kg colon digesta, respectively). Overall, we observed no significant glyphosate-associated effects on digesta pH, dry matter content, and-with few exceptions-organic acid levels. On day 9, only minor gut microbiota changes were observed. On day 35, we observed a significant glyphosate-associated decrease in species richness (CON, 462; IPA200, 417) and in the relative abundance of certain Bacteroidetes genera: CF231 (CON, 3.71%; IPA20, 2.33%; IPA200, 2.07%) and g_0.24 (CON, 3.69%; IPA20, 2.07%; IPA200, 1.75%) in cecum. No significant changes were observed at the phylum level. In the colon, we observed a significant glyphosate-associated increase in the relative abundance of Firmicutes (CON, 57.7%; IPA20, 69.4%; IPA200, 66.1%) and a decrease in Bacteroidetes (CON, 32.6%; IPA20, 23.5%). Significant changes were only observed for few genera, e.g., g_0.24 (CON, 7.12%; IPA20, 4.59%; IPA200, 4.00%). In conclusion, exposing weaned piglets to glyphosate-amended feed did not affect gastrointestinal microbial ecology to a degree that was considered actual dysbiosis, e.g., no potential pathogen bloom was observed.

Original languageEnglish
Article numbere0061523
JournalMicrobiology Spectrum
Volume11
Issue4
DOIs
Publication statusPublished - Aug 2023

Keywords

  • gastrointestinal tract
  • microbial ecology
  • piglets
  • glyphosate
  • Stomach
  • Animals
  • Diet/veterinary
  • Acids
  • Swine
  • Gastrointestinal Tract
  • Cecum
  • Dysbiosis

Fingerprint

Dive into the research topics of 'Gastrointestinal Microbial Ecology of Weaned Piglets Fed Diets with Different Levels of Glyphosate'. Together they form a unique fingerprint.

Cite this