Freezing Conformers for Gas-Phase Förster Resonance Energy Transfer

Thomas Toft Lindkvist, Iden Djavani-Tabrizi, Li Chen, Steen Brøndsted Nielsen*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

2 Citations (Scopus)

Abstract

Various techniques are available to illuminate geometric structures of molecular ions in gas phase, such as Förster Resonance Energy Transfer (FRET) informing on distances between two dyes covalently attached to a molecule. Typically, cationic rhodamines, which absorb and emit visible light, are used for labeling. Extensive work has revealed that the transition energy of a rhodamine is intricately linked to its nearby microenvironment, with nearby charges causing Stark-shifted emission. This occurs because the inter-dye Coulomb interaction is weaker in the excited state (S1) than in the ground state (S0) due to the increase in polarizability upon excitation. Therefore, absorption and emission spectra, along with FRET efficiencies, provide insights into structural motifs. At room temperature, multiple conformers often co-exist, leading to overlapping absorption bands among different conformers and broad spectra. To study specific conformers, it is necessary to isolate them, for example, using ion-mobility spectrometry. Another approach is to reduce temperature, which results in spectral narrowing and distinct absorption bands, allowing for the selection of specific conformers through selective excitation. Here, we describe the instrumentation used for cryogenically cold FRET experiments and discuss recent results for small model systems, as well as future directions for a technique still in its infancy.

Original languageEnglish
Article numbere202400448
JournalChemPlusChem
Volume89
Issue12
ISSN2192-6506
DOIs
Publication statusPublished - Dec 2024

Keywords

  • Cryogenic temperatures
  • FRET
  • Gas phase
  • Mass spectroscopy
  • Rhodamine

Fingerprint

Dive into the research topics of 'Freezing Conformers for Gas-Phase Förster Resonance Energy Transfer'. Together they form a unique fingerprint.

Cite this