Aarhus University Seal / Aarhus Universitets segl

Extensions of the sine addition law on groups

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Standard

Extensions of the sine addition law on groups. / Stetkær, Henrik.

In: Aequationes Mathematicae, Vol. 93, No. 2, 2019, p. 467-484.

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Harvard

Stetkær, H 2019, 'Extensions of the sine addition law on groups', Aequationes Mathematicae, vol. 93, no. 2, pp. 467-484. https://doi.org/10.1007/s00010-018-0584-1

APA

CBE

MLA

Vancouver

Author

Stetkær, Henrik. / Extensions of the sine addition law on groups. In: Aequationes Mathematicae. 2019 ; Vol. 93, No. 2. pp. 467-484.

Bibtex

@article{eff6a6689cec41ee8a369b5785841e0e,
title = "Extensions of the sine addition law on groups",
abstract = "Let G be a group, and let χ and μ be characters of G. We find the solutions of the functional equation f(xy) = f(x) χ(y) + μ(x) f(y) , x, y∈ G, where f: G→ C is the unknown function. This enables us to solve its Pexiderized version f(xy) = g(x) h1(y) + μ(x) h2(y) , x, y∈ G, in which f, g, h1, h2: G→ C are the unknown functions.",
keywords = "Character, FUNCTIONAL-EQUATION, Functional equation, Group, Levi-Civita, Sine addition law",
author = "Henrik Stetk{\ae}r",
year = "2019",
doi = "10.1007/s00010-018-0584-1",
language = "English",
volume = "93",
pages = "467--484",
journal = "Aequationes Mathematicae",
issn = "0001-9054",
publisher = "Springer Basel AG",
number = "2",

}

RIS

TY - JOUR

T1 - Extensions of the sine addition law on groups

AU - Stetkær, Henrik

PY - 2019

Y1 - 2019

N2 - Let G be a group, and let χ and μ be characters of G. We find the solutions of the functional equation f(xy) = f(x) χ(y) + μ(x) f(y) , x, y∈ G, where f: G→ C is the unknown function. This enables us to solve its Pexiderized version f(xy) = g(x) h1(y) + μ(x) h2(y) , x, y∈ G, in which f, g, h1, h2: G→ C are the unknown functions.

AB - Let G be a group, and let χ and μ be characters of G. We find the solutions of the functional equation f(xy) = f(x) χ(y) + μ(x) f(y) , x, y∈ G, where f: G→ C is the unknown function. This enables us to solve its Pexiderized version f(xy) = g(x) h1(y) + μ(x) h2(y) , x, y∈ G, in which f, g, h1, h2: G→ C are the unknown functions.

KW - Character

KW - FUNCTIONAL-EQUATION

KW - Functional equation

KW - Group

KW - Levi-Civita

KW - Sine addition law

UR - http://www.scopus.com/inward/record.url?scp=85050214112&partnerID=8YFLogxK

U2 - 10.1007/s00010-018-0584-1

DO - 10.1007/s00010-018-0584-1

M3 - Journal article

AN - SCOPUS:85050214112

VL - 93

SP - 467

EP - 484

JO - Aequationes Mathematicae

JF - Aequationes Mathematicae

SN - 0001-9054

IS - 2

ER -