TY - JOUR
T1 - Expression, purification, crystallization and preliminary X-ray analysis of calmodulin in complex with the regulatory domain of the plasma-membrane Ca2+-ATPase ACA8.
AU - Tidow, Henning
AU - Hein, Kim Langmach
AU - Bækgaard, Lone
AU - Palmgren, Michael
AU - Nissen, Poul
PY - 2010
Y1 - 2010
N2 - Plasma-membrane Ca(2+)-ATPases (PMCAs) are calcium pumps that expel Ca(2+) from eukaryotic cells to maintain overall Ca(2+) homoeostasis and to provide local control of intracellular Ca(2+) signalling. They are of major physiological importance, with different isoforms being essential, for example, for presynaptic and postsynaptic Ca(2+) regulation in neurons, feedback signalling in the heart and sperm motility. In the resting state, PMCAs are autoinhibited by binding of their C-terminal (in mammals) or N-terminal (in plants) tail to two major intracellular loops. Activation requires the binding of calcium-bound calmodulin (Ca(2+)-CaM) to this tail and a conformational change that displaces the autoinhibitory tail from the catalytic domain. The complex between calmodulin and the regulatory domain of the plasma-membrane Ca(2+)-ATPase ACA8 from Arabidopsis thaliana has been crystallized. The crystals belonged to space group C2, with unit-cell parameters a = 176.8, b = 70.0, c = 69.8 A, beta = 113.2 degrees. A complete data set was collected to 3.0 A resolution and structure determination is in progress in order to elucidate the mechanism of PMCA activation by calmodulin.
AB - Plasma-membrane Ca(2+)-ATPases (PMCAs) are calcium pumps that expel Ca(2+) from eukaryotic cells to maintain overall Ca(2+) homoeostasis and to provide local control of intracellular Ca(2+) signalling. They are of major physiological importance, with different isoforms being essential, for example, for presynaptic and postsynaptic Ca(2+) regulation in neurons, feedback signalling in the heart and sperm motility. In the resting state, PMCAs are autoinhibited by binding of their C-terminal (in mammals) or N-terminal (in plants) tail to two major intracellular loops. Activation requires the binding of calcium-bound calmodulin (Ca(2+)-CaM) to this tail and a conformational change that displaces the autoinhibitory tail from the catalytic domain. The complex between calmodulin and the regulatory domain of the plasma-membrane Ca(2+)-ATPase ACA8 from Arabidopsis thaliana has been crystallized. The crystals belonged to space group C2, with unit-cell parameters a = 176.8, b = 70.0, c = 69.8 A, beta = 113.2 degrees. A complete data set was collected to 3.0 A resolution and structure determination is in progress in order to elucidate the mechanism of PMCA activation by calmodulin.
M3 - Journal article
SN - 2053-230X
VL - 66
SP - 361
EP - 363
JO - Acta Crystallographica. Section F: Structural Biology and Crystallization Communications Online
JF - Acta Crystallographica. Section F: Structural Biology and Crystallization Communications Online
ER -