Aarhus University Seal / Aarhus Universitets segl

Evolutionary Processes Transpiring in the Stages of Lithopanspermia

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Ian von Hegner

Lithopanspermia is a theory proposing a natural exchange of organisms between solar system bodies as a result of asteroidal or cometary impactors. Research has examined not only the physics of the stages themselves but also the survival probabilities for life in each stage. However, although life is the primary factor of interest in lithopanspermia, this life is mainly treated as a passive cargo. Life, however, does not merely passively receive an onslaught of stress from surroundings; instead, it reacts. Thus, planetary ejection, interplanetary transport, and planetary entry are only the first three factors in the equation. The other factors are the quality, quantity, and evolutionary strategy of the transported organisms. Thus, a reduction in organism quantity in stage 1 might increase organism quality towards a second stress challenge in stage 3. Thus, robustness towards a stressor might in fact be higher in the bacterial population surviving after transport in stage 3 than at the beginning in stage 1. Therefore, the stages of lithopanspermia can themselves facilitate evolutionary processes that enhance the ability of the collected organisms to survive stresses such as pressure and heat shock. Thus, the multiple abiotic pressures that the population encounters through the three stages can potentially lead to very robust bacteria with survival capacities considerably higher than might otherwise be expected. This analysis details an outcome that is possible but probably rare. However, in addition to lithopanspermia, spacecraft mediated panspermia may also exist. The analogous stages in a spacecraft would result in a greater likelihood of increasing the stress tolerance of hitchhiking organisms. Furthermore, missions seeking life elsewhere will frequently be sent to places where the possibility of life as we know it is assumed to exist. Thus, we not only can transport terrestrial organisms to places where they are potentially more likely to survive but also may increase their invasive potential along the way. This analysis highlights further requirements that planetary protection protocols must implement and also provides a framework for analyses of ecological scenarios regarding the transmission of life, natural or artificial, between worlds in a solar system.

Original languageEnglish
JournalActa Biotheoretica
Volume69
Issue4
Pages (from-to)783-798
ISSN0001-5342
DOIs
Publication statusPublished - Dec 2021

Bibliographical note

Publisher Copyright:
© 2021, Springer Nature B.V.

    Research areas

  • Adaption, Astrobiology, Meteorites, Planetary protection

See relations at Aarhus University Citationformats

ID: 226714808