Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Sjon Hartman, Utrecht University, Utrecht
  • ,
  • Zeguang Liu, Utrecht University, Utrecht
  • ,
  • Hans van Veen, Utrecht University, Utrecht
  • ,
  • Jorge Vicente, University of Nottingham
  • ,
  • Emilie Reinen, Utrecht University, Utrecht
  • ,
  • Shanice Martopawiro, Utrecht University, Utrecht
  • ,
  • Hongtao Zhang, Rothamsted Research
  • ,
  • Nienke van Dongen, Utrecht University, Utrecht
  • ,
  • Femke Bosman, Utrecht University, Utrecht
  • ,
  • George W. Bassel, Birmingham University
  • ,
  • Eric J.W. Visser, Radboud University Nijmegen
  • ,
  • Julia Bailey-Serres, Utrecht University, Utrecht, University of California, Riverside
  • ,
  • Frederica L. Theodoulou, Rothamsted Research
  • ,
  • Kim H. Hebelstrup
  • Daniel J. Gibbs, Birmingham University
  • ,
  • Michael J. Holdsworth, University of Nottingham
  • ,
  • Rashmi Sasidharan, Utrecht University, Utrecht
  • ,
  • Laurentius A.C.J. Voesenek, Utrecht University, Utrecht

Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops.

Original languageEnglish
Article number4020
JournalNature Communications
Volume10
ISSN2041-1723
DOIs
Publication statusPublished - Dec 2019

See relations at Aarhus University Citationformats

ID: 166622074