Enhanced upconversion in one-dimensional photonic crystals: a simulation-based assessment within realistic material and fabrication constraints

Clarissa L. M. Hofmann*, Emil H. Eriksen, Stefan Fischer, Bryce S. Richards, Peter Balling, Jan Christoph Goldschmidt

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

This paper presents a simulation-based assessment of the potential for improving the upconversion efficiency of β-NaYF 4:Er 3+ by embedding the upconverter in a one-dimensional photonic crystal. The considered family of structures consists of alternating quarter-wave layers of the upconverter material and a spacer material with a higher refractive index. The two photonic effects of the structures, a modified local energy density and a modified local density of optical states, are considered within a rate-equation-modeling framework, which describes the internal dynamics of the upconversion process. Optimal designs are identified, while taking into account production tolerances via Monte Carlo simulations. To determine the maximum upconversion efficiency across all realistically attainable structures, the refractive index of the spacer material is varied within the range of existing materials. Assuming a production tolerance of σ = 1 nm, the optimized structures enable more than 300-fold upconversion photoluminescence enhancements under one sun and upconversion quantum yields exceeding 15% under 30 suns concentration.

Original languageEnglish
JournalOptics Express
Volume26
Issue6
Pages (from-to)7537-7554
Number of pages18
ISSN1094-4087
DOIs
Publication statusPublished - 19 Mar 2018

Keywords

  • SOLAR-CELL DEVICES
  • QUANTUM YIELD
  • GOLD NANOPARTICLES
  • FIELD ENHANCEMENT
  • LOCAL-DENSITY
  • SLOW-LIGHT
  • LUMINESCENCE
  • EFFICIENCY
  • ER3+
  • LANTHANIDE

Fingerprint

Dive into the research topics of 'Enhanced upconversion in one-dimensional photonic crystals: a simulation-based assessment within realistic material and fabrication constraints'. Together they form a unique fingerprint.

Cite this