Enantioselective Synthesis of Tropane Scaffolds by an Organocatalyzed 1,3-Dipolar Cycloaddition of 3-Oxidopyridinium Betaines and Dienamines

Johannes Nygaard Lamhauge, Dave McLeod, Casper Barløse, Gwyndaf Oliver, Laura Viborg, Tobias Warburg, Karl Anker Jørgensen*

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

Abstract

Tropane alkaloids constitute a compound-class which is structurally defined by a central 8-azabicyclo[3.2.1]octane core. A diverse bioactivity profile combined with an unusual aza-bridged bicyclic framework has made tropanes molecules-of-interest within organic chemistry. Enantioselective examples of (5+2) cycloadditions between 3-oxidopyridinium betaines and olefins remain unexplored, despite 3-oxidopyridinium betaines being useful reagents in organic synthesis. The first asymmetric (5+2) cycloaddition of 3-oxidopyridinium betaines is reported, affording tropane derivatives in up to quantitative yield and with excellent control of peri-, regio-, diastereo-, and enantioselectivity. The reactivity is enabled by dienamine-activation of α,β-unsaturated aldehydes combined with in situ formation of the pyridinium reaction-partner. A simple N-deprotection protocol allows for liberation of the tropane alkaloid motif, and synthetic elaborations of the cycloadducts demonstrate their synthetic utility to achieve highly diastereoselective modification around the bicyclic framework. DFT computations suggest a stepwise mechanism where regio- and stereoselectivity are defined during the first bond-forming step in which the pyridinium dipole exerts critical conformational control over its dienamine partner. In the second bond-forming step, a kinetic preference toward an initial (5+4) cycloadduct was identified; however, a lack of catalyst turn-over, reversibility, and thermodynamic bias favoring a (5+2) cycloadduct rendered the reaction fully periselective.

Original languageEnglish
Article numbere202301830
JournalChemistry - A European Journal
Volume29
Issue49
Number of pages12
ISSN0947-6539
DOIs
Publication statusPublished - Sept 2023

Keywords

  • 1,3-dipolar cycloaddition
  • asymmetric catalysis
  • inverse electron-demand
  • organocatalysis
  • tropane alkaloids

Fingerprint

Dive into the research topics of 'Enantioselective Synthesis of Tropane Scaffolds by an Organocatalyzed 1,3-Dipolar Cycloaddition of 3-Oxidopyridinium Betaines and Dienamines'. Together they form a unique fingerprint.

Cite this