Aarhus University Seal

Efficient Wet Adhesion through Mussel-Inspired Proto-Coacervates

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

DOI

Adhesion underwater is a major challenge. Mussel-inspired complex coacervates functionalized with L-3,4-dihydroxyphenylalanine (L-DOPA) are proposed for underwater adhesives through versatile chemistry of DOPA, however, simple, efficient, controllable, and nontoxic procedures to harness them are still under investigation. In this study, inspired from the mussel byssus formation process, coacervate adhesives are formed underwater by simple injection of an acidic proto-coacervate of DOPA functionalized polyelectrolytes on underwater surfaces. The proto-coacervate is initially an acidic liquid, it increased in pH due to water diffusion, resulting in coacervation driven by electrostatic interaction, without the requirement for pH adjustment or organic solvents. Additionally, the pH of liquid–liquid phase separation is tuned by substituting polyelectrolytes with different pKa, which satisfied different pH requirement in real life. The coacervate-based adhesives on glass substrates exhibit strengths comparable to commercial glues when dry and to mussel glue when wet, showing high biocompatibility in human epidermis in vitro.

Original languageEnglish
Article number2201491
JournalAdvanced Materials Interfaces
Volume10
Issue1
Number of pages12
ISSN2196-7350
DOIs
Publication statusPublished - 2023

Bibliographical note

Publisher Copyright:
© 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH.

    Research areas

  • adhesion, coacervates, DOPA, mussel-inspired adhesives, phase separation

See relations at Aarhus University Citationformats

ID: 286855650