Effects of Environmental Conditions and Bed Configuration on Oxygen Transfer Efficiency in Aerated Constructed Wetlands

Ismael Vera-Puerto*, José Campal, Sandra Martínez, Laura Cortés-Rico, Hadher Coy, Sheyie Tan, Carlos A. Arias, Gustavo Baquero-Rodríguez, Diego Rosso

*Corresponding author for this work

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

1 Citation (Scopus)

Abstract

This research evaluated the oxygen transfer efficiency in beds to be used as aerated constructed wetlands. The research methods included oxygen transfer efficiency evaluations in several bed configurations using diffused aeration systems. Experiments were conducted at two locations with different environmental conditions: a) Talca (Chile), 120 m above sea level (m.a.s.l.), 0.99 Atm and b) Cajicá (Colombia), 2550 m.a.s.l., 0.76 Atm. A column with only clean water and three bed configurations representing aerated constructed wetlands were evaluated. These configurations included: (a) coarse gravel, (b) coarse gravel with an empty core in the middle (inner container), and (c) fine gravel. Three airflow rates were evaluated: (a) low, 0.7 L/min; (b) medium, 2.5 L/min; and (c) high, 3.6 L/min. The overall oxygen mass transfer coefficient, standard oxygen transfer rate, and standard oxygen transfer efficiency were the variables calculated from the oxygen transfer evaluation tests. The research results indicated that in diffused aeration systems, oxygen transfer efficiency was negatively influenced by environmental conditions, particularly altitude, which limits the driving force for oxygen transfer into water. Furthermore, the results showed that the size of the gravel used in the bed is related to the oxygen transfer efficiency: the larger the gravel size, the higher the oxygen transfer, regardless of the altitude. Finally, research regarding oxygen transfer in aerated constructed wetlands has signaled the need for a standard procedure for aeration testing, and this work suggests a new methodology.

Original languageEnglish
Article number3284
JournalWater (Switzerland)
Volume14
Issue20
ISSN2073-4441
DOIs
Publication statusPublished - Oct 2022

Keywords

  • aeration
  • atmospheric pressure
  • constructed wetlands
  • gravel size
  • oxygen transfer

Fingerprint

Dive into the research topics of 'Effects of Environmental Conditions and Bed Configuration on Oxygen Transfer Efficiency in Aerated Constructed Wetlands'. Together they form a unique fingerprint.

Cite this