Effects of Dietary Fatty Acids on Gut Health and Function of Pigs Pre- and Post-Weaning

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

DOI

Fatty acids (FA) play a major role in relation to mucosal immune responses, epithelial barrier functions, oxidative stress, and inflammatory reactions. The dietary FA composition and the molecular structures (chain length and number of double bonds) influence digestion, absorption and metabolism, and the bioactivity of the FA. Piglets post-weaning having an immature intestine and not fully formed immune functions are very vulnerable to invading microorganisms. Manipulation of the milk FA composition via sow nutrition, or inclusion of dietary fat sources in the feed for newly weaned pigs, may be used as a strategic tool to enhance pig performance and their gut health and function pre- and post-weaning. Medium-chain fatty acids (MCFA) are absorbed directly into the portal blood and may contribute to immediate energy for the enterocytes. In addition, the MCFA, similarly to the short-chain fatty acids (SCFA), possess antibacterial effects and may thereby prevent overgrowth of pathogenic bacteria in the gastrointestinal tract. The essential FA, linoleic (LA) and α-linolenic (ALA) FA, form the building blocks for the long-chain polyunsaturated n-3 and n-6 FA. The conversion of ALA and LA into n-3 and n-6 eicosanoids, respectively, influences the molecular structures of metabolites and inflammatory reactions and other immune responses upon bacterial challenges. Dietary manipulation of the lactating sow influences the transfer of the n-3 and n-6 polyunsaturated fatty acids (PUFA) from the sow milk to the piglet and the incorporation of the FA into piglet enteric tissues and cell membranes, which exerts bioactivity of importance for immune responses and the epithelial barrier function. Especially, the n-3 PUFA present in fish oil seem to influence the gut health and function of pigs, and this is of importance during the transition periods such as post-weaning in which piglets are prone to inflammation. The proportion of unsaturated FA in the cell membranes influences the susceptibility to oxidative stress. Oxidative stress accompanies infectious diseases, and the development of lipid peroxides and other reactive oxygen products may be harmful to the epithelial barrier function. Fatty acid peroxides from the feed may also be absorbed with other lipid-solubles and thereby harm the intestinal function. Hence, antioxidative protection is important for the enteric cells. In conclusion, manipulation of the dietary FA composition can influence the gut health and function in pigs and may support a normal immune system and modulate resistance to infectious diseases during especially stressful phases of a pig's life such as post-weaning.

Original languageEnglish
Article numberskaa086
JournalJournal of Animal Science
Volume98
Issue4
ISSN0021-8812
DOIs
Publication statusPublished - 1 Apr 2020

    Research areas

  • fatty acids, piglets, microbiota, immunity, inflammation, barrier function

See relations at Aarhus University Citationformats

ID: 184527016